January 6, 1995 / Vol. 43 / Nos. 51 \& 52

MORBIDITY AND MORTALITY WEEKLY REPORT

949 Hemorrhage and Shock Associated with Invasive Pneumococcal Infection in Healthy Infants and Children 952 Asthma - United States, 1982-1992 955 Changes in Notifiable Diseases Data Presentation
957 Lack of Evidence for Wild Poliovirus Circulation - United States, 1993 Recommended Childhood Immunization Schedule - United States, January 1995 961 Monthly Immunization Table

Emerging Infectious Diseases

Hemorrhage and Shock

Associated with Invasive Pneumococcal Infection in Healthy Infants and Children - New Mexico, 1993-1994

From December 1993 through May 1994, four previously healthy children (including two infants) in New Mexico developed a severe illness characterized by septic shock and hemorrhage into the skin or internal organs. An investigation subsequently implicated Streptococcus pneumoniae as the cause of illness. The two infants attended the same child care center (CCC) and died 6 weeks apart. This report describes the syndrome, an investigation of potential transmission in the CCC, and prevention measures.

Case Investigations

On December 10, 1993, the New Mexico Department of Health (NMDH) received a report of a previously healthy 4-month-old girl (patient 1) who died from septic shock with petechiae and hemorrhage into the adrenal glands, heart, and diaphragm. Blood and tissue cultures were negative. However, because her clinical presentation suggested meningococcemia, a prophylactic regimen of rifampin was prescribed for infants, toddlers, and staff at the CCC she attended. On February 9, 1994, a 7-monthold infant (patient 2) who attended the same CCC died from septic shock, purpura, and Waterhouse-Friderichsen syndrome. Gram-positive cocci were detected on a smear of the patient's blood buffy coat, and a latex agglutination test on cerebrospinal fluid (CSF) indicated infection with S. pneumoniae as the cause of death; pneumococcal infection was confirmed by polymerase chain reaction (PCR), using primers for the pneumococcal autolysin gene on autopsy tissue, and by counterimmunoelectrophoresis (CIE) of CSF (serogroup 19). Analysis of autopsy tissue from patient 1, using the same PCR assay, suggested that she also had died from pneumococcal infection.

On February 17 and May 13, 1994, NMDH received reports of two other previously healthy children in whom septic shock and purpura fulminans had been diagnosed but who resided in different communities and who did not attend the CCC. Both children (aged 22 months and 4 years) were critically ill but fully recovered. Routine cultures were negative for both patients, but S. pneumoniae (serogroups 14 and 12, respectively) was detected by CIE of CSF from each child.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES / Public Health Service

Invasive Pneumococcal Infection - Continued

CCC Investigation

After determining the specific cause of death for the two infants, NMDH evaluated potential transmission of pneumococcal disease in the CCC. At the time of the investigation (February 9-March 25), 75 children aged 6 weeks-10 years were enrolled in the CCC, and 17 persons were employees there. CCC attendees were divided into classrooms by age: the infant group (age <1 year) had infrequent contact with the toddler group (age 1-2 years) and no contact with the older children. Staff rotated between the classrooms. The CCC staff routinely adhered to infection-control procedures that were consistent with state and federal guidelines, including handwashing after diaper changes and exclusion of infants and children with potentially infectious illnesses (1).

To characterize the number and type of illnesses occurring among attendees aged ≤ 2 years during the 2 -week periods preceding the two infants' deaths, NMDH conducted a self-administered survey of CCC staff and parents of CCC attendees. Parents were asked if their children had symptoms including cough, fever, and conjunctivitis or if a physician had told them their child had otitis media, pneumonia, or sinusitisillnesses suggestive of pneumococcal infection. Six of the nine members of the infant group (excluding patients 1 and 2) and four of eight in the toddler group had had illnesses suggestive of pneumococcal infection during November 26-December 10, 1993. Otitis media was diagnosed by a physician for the six ill infants and three of the four ill toddlers; one of the ill toddlers had had purulent conjunctivitis. During January 25-February 8, 1994, illnesses suggestive of pneumococcal infection were diagnosed in five of the nine infants (four with otitis media and one with otitis media and pneumonia) and two of the eight toddlers (one with otitis media and one with otitis media and purulent conjunctivitis).

To assess the prevalence of pneumococcal carriage, on February 11, nasopharyngeal samples were obtained from CCC staff and from children in the infant and toddler groups. Of the 38 persons from whom swabs were obtained, pneumococci were isolated from six children and two staff (serogroup 19 in two infants and one toddler).

To prevent additional cases among children and staff at the CCC, NMDH and CDC, in consultation with University of New Mexico clinicians, recommended pneumococcal polysaccharide vaccine for all children aged ≥ 2 years and for all staff. Because the vaccine is poorly immunogenic in children aged <2 years, health officials recommended those children receive one dose of benzathene penicillin administered intramuscularly with a repeat dose 1 month later.
Reported by: L Nims, MS, K Hatch, M Gallaher, MD, R Voorhees, MD, M Tanuz, I Vold, MPH, M Goldstein, MD, C Powers, J Knott, N Kalishman, MD, G Simpson, MD, CM Sewell, DrPH, State Epidemiologist, New Mexico Dept of Health; A Paul, MD, L Shandler, MD, Santa Fe, New Mexico; KB Nolte, MD, New Mexico Office of the Medical Investigator; G Overturf, MD, Univ of New Mexico Hospital, Albuquerque. J Groover, D Musher, MD, Veteran's Administration Medical Center, Houston. Childhood and Respiratory Diseases Br, Div of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, CDC.
Editorial Note: S. pneumoniae is the most common cause of invasive bacterial disease in the United States (2). The findings in New Mexico indicate that systemic pneumococcal infection in previously healthy children may be complicated by the rapid onset of septic shock accompanied by hemorrhage into the skin or other organs. Overwhelming sepsis with hemorrhagic complications has been well documented in persons who are asplenic and in adults with underlying medical conditions (3,4).

Invasive Pneumococcal Infection - Continued

However, reports of hemorrhage and shock associated with pneumococcal septicemia in previously healthy children have been limited and have included cases in a previously healthy 13 -month-old who developed fatal Waterhouse-Friderichsen syndrome (5); two children with purpura fulminans (6); and two children with pneumococcal septicemia, shock, and hemorrhagic complications (7).

Because CSF, blood, and tissue cultures were negative, determining the etiology of the four cases in New Mexico required use of alternative diagnostic methods. Latex agglutination testing is performed on CSF specimens of some patients with suspected bacterial meningitis. CIE, a technique not commonly used, is highly specific for most pneumococcal serogroups when used on CSF specimens, but its sensitivity may be lower than that of other methods (8). The validity of PCR using primers for the pneumococcal autolysin gene on autopsy tissue has not been evaluated (9).

Although the most common pneumococcal diseases in persons in CCCs include otitis media and sinusitis, transmission of invasive pneumococcal disease in this setting has been reported previously (10). The report of the two deaths among children who attended the New Mexico CCC underscores the need to improve prevention of pneumococcal disease transmission in CCCs. However, until a vaccine effective in children aged <2 years is developed and licensed, substantial morbidity from pneumococcal infections among children in CCCs will probably continue to occur.

The incidence of hemorrhage and shock as a complication of pneumococcal infection in healthy children is unknown. Identification of S. pneumoniae as the etiology of infection in a child with this presentation is difficult when cultures are negative and other diagnostic tests are not performed. CDC recommends the following case definition to facilitate further study and reporting of this illness: septic shock, hemorrhage into the skin (petechiae or purpura) or Waterhouse-Friderichsen syndrome, and evidence of pneumococcal infection in an otherwise healthy person. Evidence of pneumococcal infection may include isolation of pneumococci from sterile body fluids or detection of pneumococci by nonculture methods. If CSF or autopsy tissues are available and routine diagnostic tests are negative, CDC can assist with detection or characterization of pneumococci. Physicians and other health-care providers are encouraged to report patients with this clinical presentation to CDC through their state health departments.

References

1. American Public Health Association/American Academy of Pediatrics. Caring for our chil-dren-national health and safety performance standards: guidelines for out-of-home child care programs. Washington, DC: American Public Health Association/American Academy of Pediatrics, 1992.
2. Wenger JD, Hightower AW, Facklam RR, Gaventa S, Broome CV, and the Bacterial Meningitis Study Group. Bacterial meningitis in the United States, 1986: report of a multistate surveillance study. J Infect Dis 1990;162:1316-23.
3. Hautekeete ML, Berneman ZN, Bieger R, et al. Purpura fulminans in pneumococcal sepsis. Arch Intern Med 1986;146:497-9.
4. Johansen K, Hansen ST. Symmetrical peripheral gangrene (purpura fulminans) complicating pneumococcal sepsis. Am J Surg 1993;165:642-5.
5. Ryan CA, Wenman W, Henningsen C, Tse S. Fatal childhood pneumococcal WaterhouseFriderichsen syndrome. Pediatr Infect Dis J 1993;12:250-1.
6. Cohen JR, Lackner R, Keller A, Douglas B. The surgical implications of purpura fulminans. Ann Vasc Surg 1990;4:276-9.
7. Floret D, Andre S. Fulminating pneumococcal septicemia in children. Pediatrie 1985;40:475-80.

Invasive Pneumococcal Infection - Continued
8. Ballard TL, Roe MH, Wheeler RC, Todd JK, Glode MP. Comparison of three latex agglutination kits and counterimmunoelectrophoresis for the detection of bacterial antigens in a pediatric population. Pediatr Infect Dis J 1987;6:630-4.
9. Rudolph KM, Parkinson AJ, Black CM, Mayer LW. Evaluation of polymerase chain reaction for diagnosis of pneumococcal pneumonia. J Clin Microbiol 1993;31:2661-6.
10. Cherian T, Steinhoff MC, Harrison LH, Rohn D, McDougal LK, Dick J. A cluster of invasive pneumococcal disease in young children in child care. JAMA 1994;271:695-7.

Current Trends

Asthma - United States, 1982-1992

Asthma is characterized by variable airflow obstruction with airway hyperresponsiveness; prominent clinical manifestations include wheezing and shortness of breath. During the 1980s, the prevalence of and mortality associated with asthma increased in the United States and other countries (1,2). To describe national trends in disease burden for asthma in the United States, CDC analyzed data for 1982-1992 (the most recent year for which data are available) for deaths, hospital discharges, and self-reported morbidity. This report summarizes the findings of the analysis.

This analysis used data maintained by CDC, including the multiple-cause-of-death file, the National Hospital Discharge Survey, and the National Health Interview Survey. For asthma deaths, the underlying cause was listed as International Classification of Diseases, Ninth Revision, Clinical Modification, code 493. Because of the limited accuracy of diagnosing asthma in persons aged >35 years (3), this analysis presents overall age-adjusted rates and rates for persons aged $5-34$ years. Race-specific analyses were restricted to blacks and whites because numbers for other races were too small to enable calculation of stable estimates.

From 1982 through 1991*, the overall annual age-adjusted death rate ${ }^{\dagger}$ for asthma increased 40% and steadily, from 13.4 per 1 million population (3154 deaths) to 18.8 per 1 million (5106 deaths). During this period, the rate increased 59% for females (from 15.4 to 24.6) and 34% for males (from 11.7 to 15.7). For persons aged $5-34$ years, the rate increased 42\%, from 3.4 (401 deaths) to 4.9 (569 deaths) (Figure 1). The annual death rate was consistently higher for blacks than for whites. During this period, the rate increased 41% for females (from 3.6 to 4.6) and 43% for males (from 3.7 to 5.3).

The overall annual age-adjusted hospital discharge rate for asthma as the primary diagnosis decreased slightly from 18.4 per 10,000 in 1982 to 17.9 per 10,000 in 1992. For persons aged $5-34$ years, the rate was constant in both years (12.8 per 10,000); rates for females were consistently higher than for males, and rates for blacks were consistently higher than for whites.

From 1982 through 1992, the overall annual age-adjusted prevalence rate of selfreported asthma increased 42%, from 34.7 per 1000 to 49.4 per 1000. For persons aged $5-34$ years, the rate increased 52%, from 34.6 to 52.6 (Figure 2). The rate for males increased by 29% (from 39.7 to 51.4) and for females increased 82\% (from 29.4 to 53.6).

[^0]Asthma - Continued
FIGURE 1. Age-adjusted death rate* for asthma as the underlying cause of death for persons aged 5-34 years, by race ${ }^{\dagger}$ and year - United States, 1982-1991

*Per one million persons, standardized to the 1980 U.S. population.
${ }^{\dagger}$ Data are presented only for black and white races because numbers for other races were too small to enable calculation of stable estimates.
§Includes persons from all racial/ethnic groups for whom data are available and persons for whom race/ethnicity was unknown.
Source: CDC's National Center for Health Statistics multiple cause-of-death data.

Reported by: Air Pollution and Respiratory Health Br, Div of Environmental Hazards and Health Effects, National Center for Environmental Health, CDC.
Editorial Note: Three national health objectives for the year 2000 include decreasing disability and hospitalizations for asthma and increasing education about asthma (objectives 11.1, 17.4, and 17.14) (4). Although hospitalization rates for asthma were stable during 1982-1992, both prevalence and death rates increased during this period. Potential explanations for the stable hospitalization rates for asthma, despite the increased prevalence of self-reported disease, include improved outpatient treatment and, because of billing practices, classification of cases of asthma under other diagnostic categories. Prominent racial differences in asthma death rates and hospitalization rates indicate the need for further investigation of potential explanations (e.g., access to appropriate health care and socioeconomic factors).

Although the specific etiology of asthma is unknown, this problem may be associated with familial, infectious, allergenic, environmental, socioeconomic, and psychosocial factors. For example, in 1991, an estimated 6.4 million (63\%) of the 10.3 million persons with asthma in the United States resided in areas where at least one National Ambient Air Quality Standard was exceeded (5). Factors associated with risk for death

Asthma - Continued
FIGURE 2. Age-adjusted prevalence rate* of self-reported asthma for persons aged 5-34 years, by race ${ }^{\dagger}$ and year - United States, 1982-1992

*Per 1000 persons, standardized to the 1980 U.S. population.
${ }^{\dagger}$ Data were presented only for black and white races because numbers for other races were too small to enable calculation of stable estimates.
§Includes persons from all racial/ethnic groups for whom data are available and persons for whom race/ethnicity was unknown.
Source: National Health Interview Surveys.
among persons with asthma include medication overuse (6), substance abuse (7), and cigarette smoking (8).

Morbidity and mortality associated with asthma may be affected by patient compliance, patient education, and medical management. In particular, a high proportion of asthma morbidity and mortality may be preventable through patient recognition and aggressive medical management. In 1989, the National Asthma Education Project was implemented to increase awareness about asthma and to improve effective control of asthma by providing physicians and patients with updated treatment information. This program has developed educational materials for patients and physicians about the treatment of asthma during pregnancy, for physicians about educating patients about asthma, and for educators about adding or improving awareness about asthma in schools. Additional information about these or other asthma materials are available from the National Heart, Lung, and Blood Institute Information Center, telephone (301) 251-1222.

Asthma - Continued

References

1. Weiss KB, Wagener DK. Changing patterns of asthma mortality: identifying target populations at high risk. JAMA 1990;264:1683-7.
2. Woolcock AJ. Worldwide differences in asthma prevalence and mortality: why is asthma mortality so low in the USA? Chest 1986;90(suppl):40S-45S.
3. Sears MR, Rea HH, de Boer G, et al. Accuracy of certification of deaths due to asthma: a national study. Am J Epidemiol 1986;124:1004-11.
4. Public Health Service. Healthy people 2000: national health promotion and disease prevention objectives-full report, with commentary. Washington, DC: US Department of Health and Human Services, Public Health Service, 1991; DHHS publication no. (PHS)91-50212.
5. CDC. Populations at risk from air pollution—United States, 1991. MMWR 1993;42:301-4.
6. Ernst P, Habbick B, Suissa S, et al. Is the association between inhaled beta-agonist use and life-threatening asthma because of confounding by severity? Am Rev Respir Dis 1993;148:75-9.
7. Greenberger PA, Miller TP, Lifschultz B. Circumstances surrounding deaths from asthma in Cook County (Chicago) Illinois. Allergy Proc 1993;14:321-6.
8. Marquette CH, Saulnier F, Leroy O, et al. Long-term prognosis of near-fatal asthma: a 6-year follow-up study of 145 asthmatic patients who underwent mechanical ventilation for a nearfatal attack of asthma. Am Rev Respir Dis 1992;146:76-81.

Current Trends

Changes in Notifiable Diseases Data Presentation

The next issue of MMWR (dated January 13, 1995 [volume 44, number 1]), will incorporate modifications to Tables I and II, Cases of Notifiable Diseases, United States. The purposes of these modifications are to improve the usefulness of notifiable diseases data (1,2) and to respond to changing priorities in notifiable disease surveillance. This report describes the rationale for data dissemination in Table I and Table II.

Table I

Table I will present the cumulative number of cases of low-frequency diseases (in general, ≤ 500 cases per year) reported for the current year. In addition, Table I will present the reported number of cases of congenital syphilis, which currently is updated quarterly, and Haemophilus influenzae, for which serotype-specific information about the vaccine-preventable subgroup (serotype b) often is not reported. Data that will be deleted from Table I, but that will continue to be published in Table II, include the number of reported cases of acquired immunodeficiency syndrome (AIDS), gonorrhea, Lyme disease, measles, syphilis (primary and secondary), and tuberculosis. Publication of reports of cases of botulism will be discontinued in MMWR (weekly) but will be included in the Annual Summary of Notifiable Diseases.

Diseases proposed for deletion from the national notifiable diseases list by the Council of State and Territorial Epidemiologists (CSTE) at its National Surveillance Conference (November 30-December 2, 1994) include aseptic meningitis, primary encephalitis (except for arboviral encephalitis), postinfectious encephalitis, unspecified hepatitis, leptospirosis, and tularemia. These diseases had been published weekly; they will continue to be published in Table I until deletion is formally approved by CSTE.

Notifiable Diseases Data - Continued

Table II

Table II will present high-frequency diseases (in general, >500 cases per year) or selected diseases targeted by the national Childhood Immunization Initiative for elimination of indigenous transmission in the United States (3). Cumulative totals for both the current and immediately preceding years will be presented by state or territory. Table II also will present the number of cases of measles, pertussis, and rubella reported during the previous week. Reports of cases of imported measles previously included out-of-state cases but now will include only the number of cases believed to have resulted from importation from other countries. The category indigenous measles cases will include all other measles cases reported by the state or territory. Publication of reports of cases of three diseases-tickborne typhus fever (Rocky Mountain spotted fever), toxic shock syndrome, and typhoid fever-will be discontinued in Table II but will be included in Table I.
Reported by: Council of State and Territorial Epidemiologists. Div of Surveillance and Epidemiology, Epidemiology Program Office, CDC.
Editorial Note: National notifiable diseases data presented weekly in MMWR generally are transmitted through the National Electronic Telecommunications System for Surveillance (NETSS) (4); the exception is data on AIDS cases, which are transmitted through the human immunodeficiency virus/AIDS reporting system.

A key determinant for the changes in the table formats was the importance of listing the distribution of cases by state or region for high-frequency diseases and diseases targeted for national elimination. As a basis for comparison, cumulative totals for both current and past year (when available) will be presented for the diseases listed in Table II. The decision to change the classification of imported measles cases will facilitate tracking of cases imported from other countries. Weekly publication of NETSS data on botulism cases was not believed to be either timely or useful because an emergency botulism antitoxin surveillance system is already in place.

Although deletions and additions to the national notifiable diseases list generally are made during CSTE's annual meeting in the spring, the recent national surveillance conference focused on changes to the list. During that meeting, proposals also were tentatively approved for adding diseases to national public health surveillance, including genital chlamydia infections, coccidioidomycosis (recommended for regional surveillance), cryptosporidiosis, hantavirus infection, hemolytic uremic syndrome, invasive group A streptococcal infections, and drug-resistant Streptococcus pneumoniae. These additions have not yet been formally approved by CSTE.

References

1. CDC. Update: changes in notifiable disease surveillance data-United States, 1992-1993. MMWR 1993;42:824-6
2. CDC. National notifiable diseases reporting-United States, 1994. MMWR 1994;43:800-1.
3. CDC. Reported vaccine-preventable diseases-United States, 1993, and the Childhood Immunization Initiative. MMWR 1994;43:57-60.
4. CDC. National Electronic Telecommunications System for Surveillance-United States, 19901991. MMWR 1991;40;502-3.

Current Trends

Lack of Evidence for Wild Poliovirus Circulation United States, 1993

Following the isolation of wild poliovirus type 3 during January-February 1993 among members of a religious community objecting to vaccination in Alberta, Canada, surveillance for poliomyelitis was enhanced among related communities in the United States (1). In addition, during May-July 1993, a series of surveys was conducted in seven states (lowa, Missouri, New York, Ohio, Pennsylvania, Washington, and Wisconsin) to determine whether wild poliovirus was circulating or had circulated recently among members of these religious communities residing in the states. This report summarizes the results of these surveys.

The isolation of wild poliovirus in Canada and the efforts to enhance surveillance in the United States followed a polio outbreak in the Netherlands during September 1992-February 1993 (2-4). The outbreak was attributed to wild poliovirus type 3 and resulted in 71 cases of polio among members of a religious community objecting to vaccination. A virtually identical genotype of wild poliovirus type 3 was subsequently isolated from stool samples collected from members of related religious groups in Alberta during January-February 1993 (3) and again from samples collected in April 1993; however, this genotype was not isolated from samples collected in June 1993 (P. Duclos, Laboratory Center for Disease Control, Ottawa, Canada, personal communication, November 1994). Based on nucleotide sequence studies, the poliovirus detected in the Netherlands and Canada most likely originated in India (4).

In response to the importation of poliovirus type 3 into the Western Hemisphere, measures taken by state health departments in the United States during April 1993 included 1) intensified efforts to vaccinate persons in religious communities that usually object to vaccination; 2) enhanced surveillance to identify medical conditions possibly caused by poliovirus (i.e., aseptic meningitis and acute paralysis); and 3) the initiation of a series of serologic, stool, and/or environmental surveys in lowa, Missouri, New York, Ohio, Pennsylvania, Washington, and Wisconsin. The purpose of these surveys was to determine whether poliovirus type 3 was circulating currently or had circulated at any time since 1980 among unvaccinated members of these religious communities.

No cases of aseptic meningitis or acute paralysis have been detected among members of the religious communities since April 1993. Members of these religious communities were enrolled for the serologic, stool, and environmental surveys; poliovirus was not isolated (or detected) in the 122 stool specimens collected from members of 73 families in five states (lowa, Missouri, Ohio, Pennsylvania, and Washington). A total of 123 serum specimens from persons in four states (Missouri, Ohio, Pennsylvania, and Washington) were tested for neutralizing poliovirus antibody; antibody to poliovirus types 1, 2 , or 3 were detected in $40 \%, 92 \%$, and 26% of specimens, respectively. However, poliovirus type 3 was not detected in any of the 40 children from Ohio and Pennsylvania who were unvaccinated and born after 1979. Based on the serologic surveys, poliovirus type 3 had not circulated in these communities since 1980.

Wild Poliovirus Circulation - Continued
A total of 12 sewage and latrine waste specimens was collected during June and July 1993 from lowa, Missouri, New York, Pennsylvania, and Wisconsin and was examined by polymerase chain reaction; wild poliovirus was not detected in these samples.
Reported by: AM Shemo, MD, S Miller, R Longenecker, A Gray, F Zitnik, R Berman, Pennsylvania Dept of Health. J Bronowski, T Payton, R Genieve, TJ Halpin, MD, State Epidemiologist, Ohio Dept of Health. F James, MD, J Hensley, Whatcom County Health Dept, Bellingham; S LaCroix, State Public Health Laboratory, Washington State Dept of Health. C Friedman, DO, J Hinkle, H Marx, HD Donnell, Jr, MD, State Epidemiologist, Missouri Dept of Health. J Berg, Div of Health, Wisconsin Dept of Health and Social Svcs. J Warming, D Miller, lowa Dept of Public Health. S Thompson, G Birkhead, MD, D Krohn, New York State Dept of Health. R Berke, MD, M Clark, Chautauqua County Health Dept, Jamestown, New York. M Sobsey, PhD, Environmental Virology Laboratory, Univ of North Carolina, Chapel Hill. Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases; National Immunization Program, CDC.
Editorial Note: Wild poliovirus infection has not been documented among persons in the United States since 1986, when wild poliovirus type 1 was isolated from a person with imported paralytic polio. The last indigenous cases of polio in the United States occurred in 1979 (5), and the last imported case in which wild poliovirus was not isolated was reported in 1993*.

Polio can be prevented by vaccination. All children and all previously unvaccinated adults should receive a primary series of at least three doses of oral poliovirus vaccine (OPV) or inactivated poliovirus vaccine. For children, the standard recommended 4dose series of OPV comprises doses at ages 2, 4, and 6 months and 4-6 years (6).

The findings in this report suggest that poliovirus type 3, which caused both the outbreak in the Netherlands during 1992-93 (4) and the "silent" transmission in Canada during 1993 (3), was not imported into the United States. Despite these findings, members of religious groups that object to vaccination and suboptimally vaccinated preschool-aged children who reside in urban areas may be susceptible to polio. If poliovirus is introduced into these unvaccinated groups, the number of persons who are susceptible may support virus circulation. Some members of groups usually opposed to vaccination will accept vaccination if offered.

On September 29, 1994, the International Commission for the Certification of Polio Eradication concluded that wild poliovirus transmission had been interrupted in the Western Hemisphere (7). However, the commission recognized that the region will remain at risk for poliovirus importation until polio is eradicated globally (8). The importations into the Netherlands and Canada underscore the efficiency by which poliovirus can be transported across borders and continents ($3,9,10$). Unvaccinated persons in groups objecting to vaccination is the primary group in the United States in which transient circulation of imported poliovirus may occur. To ensure that poliovirus transmission cannot be sustained in the United States, poliovirus vaccination coverage should be increased to 90% in all areas.

References

1. CDC. Poliomyelitis-Netherlands, 1992. MMWR 1992;41:775-8.
2. CDC. Update: poliomyelitis outbreak—Netherlands, 1992. MMWR 1992;41:917-9.
[^1]
Wild Poliovirus Circulation - Continued

3. CDC. Isolation of wild poliovirus type 3 among members of a religious community objecting to vaccination—Alberta, Canada, 1993. MMWR 1993;42:337-9.
4. Oostvogel PM, van Wijngaarden JK, van der Avoort HG, et al. Poliomyelitis outbreak in an unvaccinated community in The Netherlands, 1992-93. Lancet 1994;344:665-70.
5. Strebel PM, Sutter RW, Cochi SL, et al. Epidemiology of poliomyelitis in the United States one decade after the last reported case of indigenous wild virus-associated disease. Clin Infect Dis 1992;14:568-79.
6. CDC. General recommendations on immunizations: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1994;43(no. RR-1).
7. CDC. Certification of poliomyelitis eradication-the Americas, 1994. MMWR 1994;43:720-2.
8. Pan American Health Organization. Americas certified polio free. EPI Newsletter 1994;16:2-3.
9. Rico-Hesse R, Pallansch MA, Nottay BK, Kew OM. Geographic distribution of wild poliovirus type 1 genotypes. Virology 1987;160:311-22.
10. Kew OM, Pallansch MA, Nottay BK, Rico-Hesse R, De L, Yang CF. Genotypic relationship among wild polioviruses from different regions of the world. In: Brinton MA, Heinz FX, eds. New aspects of positive-strand RNA viruses. Washington, DC: American Society for Microbiology 1990;52:357-65.

Notice to Readers

Recommended Childhood Immunization Schedule United States, January 1995

Since the 1960s, the two groups that historically have developed vaccine guidelines for the United States have been the Advisory Committee on Immunization Practices (ACIP) and the Committee on Infectious Diseases of the American Academy of Pediatrics (AAP). During 1994, these organizations participated in a working group that included representatives from the American Academy of Family Physicians to develop one vaccination schedule that would accommodate the current ACIP and AAP recommendations and ensure the earliest administration of vaccines. The recommended childhood immunization schedule (Table 1) has been endorsed by these groups and becomes effective January 1995.

In the first year of life, three doses each of diphtheria and tetanus toxoids and pertussis vaccine (DTP), Haemophilus influenzae type b (Hib) vaccine, and oral poliovirus vaccine (OPV) are recommended to be administered at ages 2,4 , and 6 months; however, the third dose of OPV may be administered through age 18 months, and for children who receive Haemophilus b conjugate vaccine (Meningococcal Protein Conjugate) (PRP-OMP) at ages 2 and 4 months, a dose at age 6 months is not required. For hepatitis B vaccine, the first dose is recommended at birth (but can be given up to age 2 months), the second at age 2 months (age 1-4 months is acceptable, provided at least 1 month has elapsed since receipt of the first dose), and the third at age 618 months. Vaccines recommended at age 12-15 months can be administered simultaneously during one visit or during two separate visits. The second dose of measles, mumps, and rubella vaccine (MMR) may be given at entry to kindergarten or middle school. Diphtheria and tetanus toxoids (Td) is recommended at age 11-12 years but may be given through age 14-16 years. When this vaccine is given at age 11-12 years, health-care providers can ensure that the child has received a second dose of MMR.
Reported by: Advisory Committee on Immunization Practices. American Academy of Pediatrics. American Academy of Family Physicians. National Immunization Program, CDC.

Notice to Readers - Continued

TABLE 1. Recommended childhood immunization schedule* — United States, January 1995

Vaccine	Birth	Months	$\begin{gathered} 4 \\ \text { Months } \end{gathered}$	6 Months	12^{\dagger} Months	15 Months	18 Months	$\begin{aligned} & 4-6 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 11-12 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 14-16 \\ & \text { Years } \end{aligned}$
	HB-1							DTP or DTaP		
Hepatitis $\mathrm{B}^{\text {8 }}$	- HB-2			HB-3						
Diphtheria, Tetanus, Pertussis"		DTP	DTP	DTP	DTPor DTaP at ≥ 15 months				Td	
H. influenzae type b**		Hib	Hib	Hib	Hib					
Poliovirus		OPV	OPV	OPV				OPV		
Measles, Mumps, Rubella ${ }^{\text {tu }}$					MM	R		MMR	MMR	

* Recommended vaccines are listed under the routinely recommended ages. Shaded bars indicate range of acceptable ages for vaccination.
${ }^{\dagger}$ Vaccines recommended in the second year of life (i.e., 12-15 months of age) may be given at either one or two visits.
\S Infants born to hepatitis B surface antigen (HBsAg)-negative mothers should receive the second dose of hepatitis B vaccine between 1 and 4 months of age, provided at least 1 month has elapsed since receipt of the first dose. The third dose is recommended between 6 and 18 months of age. Infants born to HBsAg-positive mothers should receive immunoprophylaxis for hepatitis B with 0.5 ml Hepatitis B Immune Globulin (HBIG) within 12 hours of birth, and 0.5 ml of either Merck Sharpe \& Dohme (West Point, Pennsylvania) vaccine (Recombivax HB^{\circledR}) or of SmithKline Beecham (Philadelphia) vaccine (Engerix- B^{\circledR}) at a separate site. In these infants, the second dose of vaccine is recommended at 1 month of age and the third dose at 6 months of age. All pregnant women should be screened for HBsAg during an early prenatal visit.
IThe fourth dose of diphtheria and tetanus toxoids and pertussis vaccine (DTP) may be administered as early as 12 months of age, provided at least 6 months have elapsed since the third dose of DTP. Combined DTP-Hib products may be used when these two vaccines are administered simultaneously. Diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP) is licensed for use for the fourth and/or fifth dose of DTP in children aged ≥ 15 months and may be preferred for these doses in children in this age group.
**Three H. influenzae type b conjugate vaccines are available for use in infants: 1) oligosaccharide conjugate Hib vaccine (HbOC) (HibTITER ${ }^{\circledR}$, manufactured by Praxis Biologics, Inc. [West Henrietta, New York], and distributed by Lederle-Praxis Biologicals, [Wayne, New Jersey]); 2) polyribosylribitol phosphate-tetanus toxoid conjugate (PRP-T) (ActHIB ${ }^{\text {TM }}$, manufactured by Pasteur Mérieux Sérums \& Vaccins, S.A. (Lyon, France), and distributed by Connaught Laboratories, Inc. [Swiftwater, Pennsylvania], and OmniHIBTM, manufactured by Pasteur Mérieux Sérums \& Vaccins, S.A., and distributed by SmithKline Beecham); and 3) Haemophilus b conjugate vaccine (Meningococcal Protein Conjugate) (PRP-OMP) (PedvaxHIB ${ }^{\circledR}$, manufactured by Merck Sharp \& Dohme). Children who have received PRP-OMP at 2 and 4 months of age do not require a dose at 6 months of age. After the primary infant Hib conjugate vaccine series is completed, any licensed Hib conjugate vaccine may be used as a booster dose at age 12-15 months.
${ }^{\dagger \dagger}$ The second dose of measles-mumps-rubella vaccine should be administered EITHER at 4-6 years of age OR at 11-12 years of age.
Source: Advisory Committee on Immunization Practices, American Academy of Pediatrics, and American Academy of Family Physicians.

Monthly Immunization Table

To track progress toward achieving the goals of the Childhood Immunization Initiative (CII), CDC publishes monthly a tabular summary of the number of cases of all diseases preventable by routine childhood vaccination reported during the previous month and year-to-date (provisional data). In addition, the table compares provisional data with final data for the previous year and highlights the number of reported cases among children aged <5 years, who are the primary focus of CII. Data in the table are derived from CDC's National Notifiable Diseases Surveillance System.

Number of reported cases of diseases preventable by routine childhood vaccination — United States, November 1994 and 1993-1994*

Disease	No. cases, November 1994	Total cases January-November		No. cases among children aged <5 years ${ }^{\dagger}$ January-November	
		1993	1994	1993	1994
Congenital rubella					
syndrome (CRS)	2	5	6	4	5
Diphtheria	0	0	1	0	1
Haemophilus influenzae§	69	1,222	1,031	379	266
Hepatitis BII	817	11,469	10,399	120	106
Measles	3	300	876	114	211
Mumps	97	1,484	1,212	245	198
Pertussis	258	5,689	3,198	3,398	1,708
Poliomyelitis, paralytic**	0	3	1	1	1
Rubella	2	175	211	31	21
Tetanus	1	39	34	0	0

*Data for 1993 are final and for 1994, are provisional.
${ }^{\dagger}$ For 1993 and 1994, age data were available for 90% or more cases, except for 1993 age data for CRS, which were available for 80% of cases.
${ }^{\S}$ Invasive disease; H. influenzae serotype is not routinely reported to the National Notifiable Diseases Surveillance System.
${ }^{9}$ Because most hepatitis B virus infections among infants and children aged <5 years are asymptomatic (although likely to become chronic), acute disease surveillance does not reflect the incidence of this problem in this age group or the effectiveness of hepatitis B vaccination in infants.
** One case with onset in 1994 has been confirmed; this case is vaccine-associated. An additional six suspected cases are under investigation. In 1993, three of 10 suspected cases were confirmed; two of the confirmed cases of 1993 were vaccine-associated, and one was imported. The imported case occurred in a 2 -year-old Nigerian child brought to the United States for care of his paralytic illness; no poliovirus was isolated from the child.

Erratum: Vol. 43, No. 46

In the article "Update: Influenza Activity—United States, 1994-95 Season," an error appeared on page 848. In the first sentence of the second paragraph, Minnesota, not Michigan, should have been listed among the states that reported sporadic isolates of influenza type A(H3N2) during July-September 1994.

FIGURE I. Notifiable disease reports, comparison of 4-week totals ending December 24, 1994, with historical data - United States

*The large apparent decrease in the number of reported cases of measles (total) reflect dramatic fluctuations in the historical baseline. (Ratios (log scale) for week 51 measles (total) is 0.03125).
${ }^{\dagger}$ Ratio of current 4 -week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending December 24, 1994 (51st Week)

	Cum. 1994		Cum. 1994
AIDS*	72,888	Measles: imported	186
Anthrax		indigenous	696
Botulism: Foodborne	58	Plague	14
Infant	74	Poliomyelitis, Paralytic§	1
Other	7	Psittacosis	40
Brucellosis	93	Rabies, human	2
Cholera	31	Syphilis, primary \& secondary	19,783
Congenital rubella syndrome	6	Syphilis, congenital, age < 1 year	1,123
Diphtheria	1	Tetanus	36
Encephalitis, post-infectious	107	Toxic shock syndrome	180
Gonorrhea	388,234	Trichinosis	35
Haemophilus influenzae (invasive disease) ${ }^{\dagger}$	1,113	Tuberculosis	21,694
Hansen Disease	111	Tularemia	85
Leptospirosis	34	Typhoid fever	405
Lyme Disease	11,144	Typhus fever, tickborne (RMSF)	437

*Updated monthly to the Division of HIV/AIDS, National Center for Infectious Diseases; last update November 29, 1994.
${ }_{\S}{ }^{\dagger}$ Of 1047 cases of known age, 301 (29%) were reported among children less than 5 years of age.
${ }^{\S}$ This case was vaccine-associated. The remaining 6 suspected cases with onset in 1994 have not yet been confirmed.
ITotal reported to the Division of Sexually Transmitted Diseases and HIV Prevention, National Center for Prevention Services, through second quarter 1994.

TABLE II. Cases of selected notifiable diseases, United States, weeks ending December 24, 1994, and December 25, 1993 (51st Week)

Reporting Area	AIDS*	Aseptic Meningitis	Encephalitis		Gonorrhea		Hepatitis (Viral), by type				Legionel-losis	Lyme Disease
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Cum. } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$
UNITED STATES	72,888	7,932	650	107	388,234	391,692	23,054	11,277	4,181	402	1,511	11,144
NEW ENGLAND	2,589	311	18	5	8,276	7,699	283	305	127	15	75	2,560
Maine	79	32	5	-	89	78	24	11	-	-	5	27
N.H.	60	33	-	2	105	71	15	22	8	-	-	31
Vt.	34	36	3	-	35	24	14	-	-	-	1	13
Mass.	1,309	90	8	1	3,182	3,132	104	175	99	13	57	256
R.I.	241	120	2	2	463	423	29	8	20	2	12	471
Conn.	866	-	-	-	4,402	3,971	97	89	-	-	-	1,762
MID. ATLANTIC	21,304	914	61	19	43,111	45,686	1,657	1,449	443	9	245	7,047
Upstate N.Y.	2,006	443	36	3	10,649	10,049	520	379	217	5	60	4,375
N.Y. City	12,177	146	7	5	14,236	12,294	683	374	4	-	10	42
N.J.	4,655	-	-	-	5,089	5,558	278	356	187	-	41	1,303
Pa.	2,466	325	18	11	13,137	17,785	176	340	35	4	134	1,327
E.N. CENTRAL	5,883	1,518	164	22	76,513	84,238	2,480	1,123	306	12	438	136
Ohio	1,095	390	55	4	23,319	22,287	1,153	165	24	-	192	78
Ind.	589	201	12	1	9,055	8,523	362	180	10	-	106	14
III.	2,896	386	56	5	19,579	29,314	453	225	65	5	31	11
Mich.	960	534	37	12	17,501	17,680	349	428	204	7	79	33
Wis.	343	7	4	-	7,059	6,434	163	125	3	-	30	-
W.N. CENTRAL	1,502	431	38	8	21,950	21,068	1,126	648	108	12	94	285
Minn.	375	27	9	-	3,493	2,381	231	64	23	1	2	165
lowa	96	120	1	1	1,576	1,508	64	26	13	11	33	17
Mo.	671	157	8	4	11,880	12,728	570	495	42	-	38	87
N. Dak.	22	13	4	-	34	52	6	1	-	-	4	-
S. Dak.	15	2	4	-	199	246	37	4	-	-	1	-
Nebr.	84	37	5	3	1,060	484	118	29	14	-	10	2
Kans.	239	75	7	-	3,708	3,669	100	29	16	-	6	14
S. ATLANTIC	17,469	1,550	146	35	108,480	98,356	1,441	2,240	608	55	339	839
Del.	247	38	1	-	1,941	1,532	17	5	1	-	26	78
Md.	2,526	252	23	4	17,462	16,315	217	405	33	16	90	379
D.C.	1,325	53	-	1	6,975	5,515	29	57	2		11	9
Va.	1,089	321	32	6	13,443	12,143	185	131	25	10	12	129
W. Va.	76	39	48	2	835	688	21	45	45	-	4	27
N.C.	1,152	220	41	1	27,740	24,039	140	280	53	-	27	77
S.C.	1,088	31	-	-	12,807	10,612	40	33	10	-	16	7
Ga.	2,071	50	1	$\stackrel{-}{-}$	4,299	4,660	33	532	185	$\stackrel{-}{-}$	99	106
Fla.	7,895	546	-	21	22,978	22,852	759	752	254	29	54	27
E.S. CENTRAL	1,942	542	40	3	45,246	45,107	719	1,179	914	2	77	42
Ky.	296	179	16	1	5,083	4,877	194	72	32	-	9	23
Tenn.	693	144	12	-	14,965	14,285	322	1,018	861	1	44	13
Ala.	554	170	9	1	14,133	15,792	131	89	21	1	13	6
Miss.	399	49	3	1	11,065	10,153	72	-	-	-	11	-
W.S. CENTRAL	6,982	869	50	2	46,345	44,058	3,306	1,571	610	71	46	131
Ark.	255	50		-	6,439	7,530	209	37	8	3	10	8
La.	1,146	34	8	-	11,753	11,746	154	174	185	1	14	2
Okla.	244	-	-	-	3,259	4,580	376	320	348	3	11	76
Tex.	5,337	785	42	2	24,894	20,202	2,567	1,040	69	64	11	45
MOUNTAIN	2,107	353	12	4	9,826	10,982	4,477	656	426	63	110	21
Mont.	26	8	-	-	87	84	24	22	15	-	16	-
Idaho	56	6	-	-	92	170	375	75	68	1	2	3
Wyo.	18	4	3	1	86	75	30	23	166	-	6	5
Colo.	763	137	3	-	3,544	3,743	589	99	73	18	21	1
N. Mex.	198	20		-	1,080	957	1,120	217	46	11	4	8
Ariz.	559	77	-	2	3,084	3,689	1,480	76	18	15	29	-
Utah	131	56	2	1	235	414	612	85	20	4	7	3
Nev.	356	45	4	-	1,618	1,850	247	59	20	14	25	1
PACIFIC	13,110	1,444	121	9	28,487	34,498	7,565	2,106	639	163	87	83
Wash.	856	-	,	-	2,834	3,600	342	76	72	2	8	-
Oreg.	550	-	-	-	571	1,144	872	89	22	1	-	-
Calif.	11,481	1,295	118	8	23,609	28,502	6,090	1,902	540	157	75	83
Alaska	- 40	18	3	-	, 875	648	203	11		-	-	-
Hawaii	183	131	-	1	598	604	58	28	5	3	4	-
Guam	1	22	-	-	197	99	44	6	1	12	3	-
P.R.	2,159	39	1	3	458	489	88	374	169	23	-	-
V.I.	49	-	-	-	41	93	-	1	-	-	-	-
Amer. Samoa	-	-	-	-	31	42	8	-	-	-	-	-
C.N.M.I.	-	-	-	-	45	78	8	1	-	-	-	-
N : Not notifiable		U: Unavail		C.N.M	I.: Commo	nwealth	Northe	n Maria	na Island			

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending December 24, 1994, and December 25, 1993 (51st Week)

Reporting Area	Malaria Cum. 1994	Measles (Rubeola)					Menin- gococcal Infections Cum. 1994	Mumps		Pertussis			Rubella		
		Indigenous		Imported*		Total Cum. 1993									
		1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$			1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1993 \end{aligned}$	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1993 \end{aligned}$
UNITED STATES	1,055	3	696	2	186	304	2,584	16	1,561	55	3,576	6,206	-	219	177
NEW ENGLAND	78	-	14	-	14	63	138	-	26	13	471	745	-	131	2
Maine	6	-	1	-	4	1	23	-	3	-	18	20	-		1
N.H.	3	-	1	-	-	2	7	-	4	-	84	157	-		-
Vt.	3	-	2	-	1	31	4	-	-	-	45	92	-	-	-
Mass.	34	-	2	-	6	18	61	-	3	13	277	377	-	125	1
R.I.	9	-	4	-	3	2	-	-	4	-	7	14	-	3	-
Conn.	23	-	4	-	-	9	43	-	12	-	40	85	-	3	-
MID. ATLANTIC	216	-	172	-	33	38	253	-	110	2	594	946	-	10	59
Upstate N.Y.	56	-	12	-	14	8	94	-	32	2	232	347	-	8	17
N.Y. City	82	-	11	-	3	19	11	-	13	-	157	97	-	1	22
N.J.	48	-	144	-	12	11	55	-	7	-	11	85	-	1	15
Pa .	30	-	5	-	4	-	93	-	58	-	194	417	-	-	5
E.N. CENTRAL	102	-	59	-	44	31	412	4	261	2	417	1,552	-	12	8
Ohio	15	-	15	-	2	9	118	1	75	1	158	461	-	-	1
Ind.	15	-	-	-	1	1	82	-	7	1	66	176	-	-	3
III.	39	-	17	-	39	9	119	-	106	-	95	432	-	3	1
Mich.	31	-	24	-	2	6	58	3	59	-	48	115	-	9	2
Wis.	2	-	3	-	-	6	35	-	14	-	50	368	-	-	1
W.N. CENTRAL	45	-	126	-	44	3	176	1	67	-	223	549	-	2	1
Minn.	14	-	-	-	-	-	18	-	5	-	100	319	-	-	-
Iowa	5	-	6	-	1	-	20	-	16	-	23	37	-	-	-
Mo.	13	-	118	-	42	1	87	1	40	-	45	142	-	2	1
N. Dak.	1	-	-	-	-	-	1	-	5	-	5	5	-	-	-
S. Dak.	,	-	-	-	-	-	9	-	-	-	26	8	-	-	-
Nebr.	5	-	1	-	1	-	13	-	1	-	11	14	-	-	-
Kans.	7	-	1	-	-	2	28	-	-	-	13	24	-	-	-
S. ATLANTIC	226	-	59	-	8	29	440	2	203	4	363	664	-	11	7
Del.	3	-	-	-	-	-	5	-	-	-	3	10	-	-	-
Md.	100	-	2	-	2	4	44	-	68	3	80	131	-	-	3
D.C.	15	-	-	-	-	-	7	-	-	1	11	14	-	-	-
Va .	37	-	1	-	2	4	66	2	46	-	36	75	-	-	-
W. Va.	-	-	36	-	-	-	14	-	3	-	5	8	-	-	-
N.C.	11	-	2	-	1	1	54	-	36	-	140	199	-	-	-
S.C.	5	-	-	-	-	-	35	-	8	-	14	73	-	-	-
Ga.	26	-	3	-	-	-	69	-	9	-	27	56	-	2	-
Fla.	29	-	15	-	3	20	146	-	33	-	47	98	-	9	4
E.S. CENTRAL	32	-	28	-	-	1	158	-	27	1	123	293	-	-	1
Ky.	12	-	-	-	-	-	41	-	-	-	59	38	-	-	1
Tenn.	10	-	28	-	-	-	40	-	8	-	22	183	-	-	-
Ala.	9	-	-	-	-	1	77	-	12	1	35	61	-	-	-
Miss.	1	-	-	-	-	-	-	-	7	-	7	11	-	-	-
W.S. CENTRAL	75	-	11	-	8	10	332	1	436	9	226	190	-	13	18
Ark.	3	-		-	1	-	45	-	5	-	27	12	-		-
La.	10	-	-	-	1	1	40	1	35	-	12	14	-	-	1
Okla.	7	-	$1{ }^{-}$	-	-	-	35	-	23	$\overline{-}$	32	81	-	4	1
Tex.	55	-	11	-	6	9	212	-	373	9	155	83	-	9	16
MOUNTAIN	39	3	155	2	20	7	167	3	156	14	492	448	-	5	11
Mont.	-	-	-	-	-	-	6	-	-	-	11	11	-	-	-
Idaho	2	-	1	-	-	-	17	-	10	11	161	99	-	-	2
Wyo.	1	-	-	-	-	-	9	-	3	-	-	1	-	-	-
Colo.	18	-	17	-	3	3	39	-	3	-	125	185	-	-	2
N. Mex.	3	-	-	-	-	-	17	N	N	2	36	41	-	-	-
Ariz.	9	3	5	2	4	3	48	-	95	1	132	70	-	-	2
Utah	4		132	-	2	-	19	-	26	-	24	36	-	4	4
Nev.	2	-	,	-	11	1	12	3	18	-	3	5	-	1	1
PACIFIC	242	-	72	-	15	122	508	5	275	10	667	819	-	35	70
Wash.	16	-	-	-	-	-	33	1	9	2	35	86	-	-	-
Oreg.	14	-	-	-	2	4	106	N	N	2	43	105	-	3	-
Calif.	195	-	56	-	9	96	355	4	244	6	567	609	-	27	41
Alaska	2	-	16	-	-	2	5		4	-	1	5	-	1	1
Hawaii	15	-	-	-	4	20	9	-	18	-	21	14	-	4	28
Guam	4	U	211	U	-	19	1	U	6	U	2	-	U	1	-
P.R.	3	-	13	-	-	356	15		2		2	11	,	-	-
V.I.	-	U	-	U	-	-	-	U	1	U	-	-	U	-	-
Amer. Samoa	-	U	-	U	-	-	-	U	1	U	2	2	U	-	-
C.N.M.I.	1	U	26	U	-	87	-	U	2	U	-	1	U	-	-

*For measles only, imported cases include both out-of-state and international importations.
N : Not notifiable \quad U: Unavailable $\quad \dagger$ International $\quad{ }^{\text {§ Out-of-state }}$

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending December 24, 1994, and December 25, 1993 (51st Week)

Reporting Area	Syphilis (Primary \& Secondary)		ToxicShock Syndrome	Tuberculosis		Tularemia	Typhoid Fever	Typhus Fever (Tick-borne) (RMSF)	Rabies, Animal
	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$
UNITED STATES	19,783	25,710	180	21,694	22,632	85	405	437	7,171
NEW ENGLAND	215	348	4	515	534	1	22	15	1,846
Maine	4	8	1	27	25	-	-	-	1,84
N.H.	4	25	-	16	17	-	-	-	212
Vt.	-	1	1	10	7	-	-	-	140
Mass.	90	122	2	268	305	1	18	7	717
R.I.	16	15	-	52	58	-	1	-	44
Conn.	101	177	-	142	122	-	3	8	733
MID. ATLANTIC	1,352	2,353	28	4,311	4,916	2	110	18	1,825
Upstate N.Y.	161	245	15	502	678	1	12	6	1,306
N.Y. City	562	1,183	-	2,509	2,830	1	72	1	-
N.J.	234	303	-	800	813	-	20	4	272
Pa .	395	622	13	500	595	-	6	7	247
E.N. CENTRAL	2,756	4,160	40	2,118	2,309	8	73	44	66
Ohio	1,106	1,170	11	334	303	1	7	27	4
Ind.	255	360	2	191	219	2	7	5	13
III.	812	1,604	12	1,081	1,234	3	46	10	19
Mich.	278	543	15	447	459	1	6	2	14
Wis.	305	483	-	65	94	1	7	-	16
W.N. CENTRAL	1,147	1,592	26	566	506	39	1	39	214
Minn.	55	56	1	126	80	1	-	-	17
Iowa	71	64	8	62	59	-	-	1	85
Mo.	957	1,342	7	245	243	25	1	20	26
N. Dak.	-	4	1	8	7	1	-		12
S. Dak.	1	2	-	25	14	2	-	13	39
Nebr.	11	10	4	19	23	3	-	1	
Kans.	52	114	5	81	80	7	-	4	35
S. ATLANTIC	5,295	6,394	8	3,956	4,511	2	48	207	1,947
Del.	27	91	-	40	47	-	1	-	41
Md.	323	356	-	333	392	1	14	24	508
D.C.	213	325	-	108	160	-	1	-	3
Va .	788	644	1	292	444	-	8	19	421
W. Va.	9	12	-	79	75	-	-	2	80
N.C.	1,620	1,893	1	551	577	-	-	82	172
S.C.	798	909	-	376	394	-	-	20	173
Ga.	790	1,052	1	672	741	1	2	55	361
Fla.	727	1,112	5	1,505	1,681	-	22	5	188
E.S. CENTRAL	3,849	4,058	6	1,379	1,610	2	4	47	220
Ky.	214	331	2	327	375	2	1	9	26
Tenn.	1,009	1,156	3	401	508	-	3	29	71
Ala.	621	861	1	429	487	-	-	2	123
Miss.	2,005	1,710	-	222	240	-	-	7	-
W.S. CENTRAL	4,235	5,382	2	2,964	2,651	17	16	53	644
Ark.	465	549	-	277	185	16	-	11	25
La.	1,635	2,517	-	193	357	-	3	-	69
Okla.	111	277	2	239	166	1	3	35	42
Tex.	2,024	2,039	-	2,255	1,943	-	10	7	508
MOUNTAIN	233	251	13	521	565	9	12	14	135
Mont.	4	1	-	9	13	3	-	4	22
Idaho	2	-	3	12	12	-	-	-	3
Wyo.	2	13	-	9	6	-	-	2	19
Colo.	128	87	6	21	108	1	3	4	15
N. Mex.	19	24		65	59	1	1	2	8
Ariz.	39	95	2	229	236	-	3	1	45
Utah	8	11	2	55	30	2	2	,	13
Nev.	31	20	-	121	101	2	3	1	10
PACIFIC	701	1,172	53	5,364	5,030	5	119	-	274
Wash.	32	55	3	253	260	-	4	-	-
Oreg.	21	40	-	90	$\overline{7}$	2	5	-	12
Calif.	641	1,061	46	4,709	4,467	2	105	-	232
Alaska	4	8	-	63	56	1	5	-	30
Hawaii	3	8	4	249	247	-	5	-	-
Guam	10	3	-	170	65	-	1	-	${ }^{-}$
P.R.	298	486	-	159	213	-	-	-	61
V.I.	28	42	-	-	2	-	-	-	-
Amer. Samoa	1	-	-	4	4	-	1	-	-
C.N.M.I.	2	7	-	35	41	-	1	-	-

U: Unavailable

TABLE III. Deaths in 121 U.S. cities,* week ending
 December 24, 1994 (51st Week)

Reporting Area	All Causes, By Age (Years)						P\&I ${ }^{\dagger}$ Total	Reporting Area	All Causes, By Age (Years)						P\&I ${ }^{\dagger}$ Total
	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
NEW ENGLAND	627	425	109	66	13	13	42	S. ATLANTIC	1,315	817	260	148	40	46	88
Boston, Mass.	148	83	26	23	8	7	9	Atlanta, Ga.	131	92	14	20	1	4	7
Bridgeport, Conn.	44	29	9	5	1	-	2	Baltimore, Md.	308	171	75	40	14	8	32
Cambridge, Mass.	24	22	1	1	-	-	3	Charlotte, N.C.	113	66	28	12	5	2	13
Fall River, Mass.	34	30	4	-	-	-	1	Jacksonville, Fla.	124	91	18	11	2	2	8
Hartford, Conn.	56	36	14	4	2	-	1	Miami, Fla.	108	69	18	14	5	2	-
Lowell, Mass.	32	25	5	1	1	-	4	Norfolk, Va.	44	25	9	7	2	1	2
Lynn, Mass.	12	8	2	2	-	-	-	Richmond, Va.	57	30	20	5	2	-	3
New Bedford, Mass.	35	21	7	6	-	1	1	Savannah, Ga.	52	35	8	8	-	1	5
New Haven, Conn.	45	28	10	5	1	1	3	St. Petersburg, Fla.	59	46	7	2	1	3	4
Providence, R.I.	45	26	13	6	-	-	4	Tampa, Fla.	172	116	41	10	2	3	11
Somerville, Mass.	3	3	-	-	-	-	-	Washington, D.C.	133	66	22	19	6	20	3
Springfield, Mass.	59	44	10	4	-	1	9	Wilmington, Del.	14	10	-	-	-	-	-
Waterbury, Conn.	35 55	29	2	4	-	3	2								
Worcester, Mass.	55	41	6	5	-	3	3	E.S. CENTRAL Birmingham, Ala.	829 131	554 81	155 29	62 10	24 6	34 5	68 4
MID. ATLANTIC	2,685	1,792	495	288	56	54	136	Chattanooga, Tenn.	78	58	13	4	3	-	7
Albany, N.Y.	53	34	11	5	1	2	4	Knoxville, Tenn.	90	70	15	1	1	3	6
Allentown, Pa.	20	16	3	1	-	-	-	Lexington, Ky.	75	51	15	2	3	4	8
Buffalo, N.Y.	107	90	12	4	-	1	14	Memphis, Tenn.	242	153	44	20	7	18	29
Camden, N.J.	27	18	6	2	-	1	1	Mobile, Ala.	74	57	12	4	-	1	2
Elizabeth, N.J.	17	14	2	1	-	-	1	Montgomery, Ala.	29	22	5	1	1	-	3
Erie, Pa.§	51	37	8	4	1	1	2	Nashville, Tenn.	110	62	22	20	3	3	9
Jersey City, N.J.	57	41	3	9	1	3)								
New York City, N.Y.	1,539	982	306	193	31	27	59	W.S. CENTRAL	1,224 49	817	228 9	108	40	31	58
Newark, N.J.	70	32	10	22	3	3	1	Austin, Tex.	49	35	9	3 9	2	3	1
Paterson, N.J.	34	23	8	2	-	1	1	Baton Rouge, La.	79	54	10	9	3	3	-
Philadelphia, Pa.	295	190	62	27	7	9	21	Corpus Christi, Tex.	45	33	9	1	1	1	7
Pittsburgh, Pa.§	62	48	9	1	2	2	7	Dallas, Tex.	201	133	35	19	8	6	7
Reading, Pa.	18	13	3	2	2	2	4	El Paso, Tex.	98	60	18	10	7	3	11
Rochester, N.Y.	137	102	21	6	7	1	10	Ft. Worth, Tex.	127	76	28	15	5	3	6
Schenectady, N.Y.	30	25	4	1	-	-	1	Houston, Tex.	U	U	17	4	U	U	6
Scranton, Pa.§	26	21	5	-	-	-	2	Little Rock, Ark.	62	37	17	4	2	2	6
Syracuse, N.Y.	90	69	14	2	3	2	5	New Orleans, La.	169	114	28	20	5	2	14
Trenton, N.J.	32	21	5	5	-	1	3	San Antonio, Tex.	230	157	41	22	4	6	14
Utica, N.Y.	20	16	3	1	-	-	U	Shreveport, La.	83	51 67	24 9	4	2	2	8
Yonkers, N.Y.	U	U	U	U	U	U	U	Tulsa, Okla.	81	67	9	1	1	3	5
E.N. CENTRAL	1,949	1,227	384	181	86	53	102	MOUNTAIN	964	638	173	101	25	27	60
Akron, Ohio	53	33	13	4	2	1	102	Albuquerque, N.M.	92	66	15	8	2	1	1
Canton, Ohio	42	34	8	-	-	-	3	Colo. Springs, Colo.	53	32	17	3	-	1	1
Chicago, III.	361	154	73	72	43	19	8	Denver, Colo.	135	86	21	19	7	2	7
Cincinnati, Ohio	23	16	4	2	1	-	1	Las Vegas, Nev.	191	121	39	21	4	6	13
Cleveland, Ohio	169	102	36	20	4	7	4	Ogden, Utah	30	25	3	31	-	2	5
Columbus, Ohio	182	128	33	14	7	-	16	Phoenix, Ariz.	195	113	38	31	4	9	15
Dayton, Ohio	117	97	16	1	-	3	10	Pueblo, Colo.	33 103	26	3 17	4	4	3	2
Detroit, Mich.	175	96	48	20	5	6	5	Salt Lake City, Utah	103	71	17	8	4	3	14
Evansville, Ind.	49	36	9	-	-	4	-	Tucson, Ariz.	132	98	20	7	4	3	6
Fort Wayne, Ind.	68	49	12	4	2	1	5	PACIFIC	1,832	1,243	311	180	34	40	131
Gary, Ind.	18	7 53	8	1	1	1	-	Berkeley, Calif.	+ 24	17	4	2	-	1	-
Grand Rapids, Mich.	70	53	13	1	2	1	8	Fresno, Calif.	119	77	24	15	1	2	4
Indianapolis, Ind.	169	108	35	14	10	2	11	Glendale, Calif.	25	21	3	1	-	-	1
Madison, Wis.	58	43	10	3	1	1	7	Honolulu, Hawaii	80	55	13	7	2	3	4
Milwaukee, Wis.	81	61	12	8	-	-	6	Long Beach, Calif.	73	47	14	9	1	2	10
Peoria, III.	40	28	9	2	1	-	4	Los Angeles, Calif.	499	312	89	63	20	8	19
Rockford, III.	51	38	8	1	3	1	1	Pasadena, Calif.	35	29	4		1	1	4
South Bend, Ind.	53	42	7	2	1	1	4	Portland, Oreg.	94	67	15	6	-	6	7
Toledo, Ohio	109	77	30	8	3	3	6	Sacramento, Calif.	U	U	U	U	U	U	U
Youngstown, Ohio	61	25	30	4	-	2	3	San Diego, Calif.	187	126	33	16	1	11	21
W.N. CENTRAL	804	582	112	59	21	19	41	San Francisco, Calif.	151	91	22	20	1		20
Des Moines, lowa	120	88	18	9	21	5	12	San Jose, Calif.	189	134	33	15	2	5	19
Duluth, Minn.	32	27	2	3	-		5	Santa Cruz, Calif.	45	33	- 6	5	1	-	5
Kansas City, Kans.	2	2	-	-	5	5	-	Seattle, Wash.	141	102	25	11	3	1	6
Kansas City, Mo.	119	73	18	7	5	5	3	Spokane, Wash. Tacoma, Wash.		36 96	6	4	1	1	6
Lincoln, Nebr.	27	23	3	1	-	-	3	Tacoma, Wash.	123	96	20	6	1	-	6
Minneapolis, Minn.	213	160	29	16	3	5	14	TOTAL	12,229 ${ }^{\text {II }}$	8,095	2,227	1,193	339	317	726
Omaha, Nebr.	79	56	12	6	2	3	2								
St. Louis, Mo.	148	107	20	15	5	1	-								
St. Paul, Minn.	51	37	8	2	4	-	2								
Wichita, Kans.	13	9	2	-	2	-	-								

[^2]FIGURE I. Notifiable disease reports, comparison of 4-week totals ending December 31, 1994, with historical data - United States

*The large apparent decrease in the number of reported cases of measles (total) reflect dramatic fluctuations in the historical baseline. (Ratios (log scale) for week 52 measles (total) is 0.06170).
${ }^{\dagger}$ Ratio of current 4 -week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending December 31, 1994 (52nd Week)

	Cum. 1994		Cum. 1994
AIDS*	78,126	Measles: imported	188
Anthrax		indigenous	707
Botulism: Foodborne	59	Plague	14
Infant	76	Poliomyelitis, Paralytic§	1
Other	7	Psittacosis	41
Brucellosis	95	Rabies, human	5
Cholera	39	Syphilis, primary \& secondary	20,183
Congenital rubella syndrome	6	Syphilis, congenital, age < 1 year	1,123
Diphtheria	1	Tetanus	29
Encephalitis, post-infectious	107	Toxic shock syndrome	183
Gonorrhea	400,592	Trichinosis	35
Haemophilus influenzae (invasive disease) ${ }^{\dagger}$	1,126	Tuberculosis	22,152
Hansen Disease	111	Tularemia	85
Leptospirosis	35	Typhoid fever	410
Lyme Disease	11,424	Typhus fever, tickborne (RMSF)	441

*Updated monthly to the Division of HIV/AIDS, National Center for Infectious Diseases; last update December 31, 1994.
${ }_{\S}^{\dagger}$ Of 1055 cases of known age, 301 (29%) were reported among children less than 5 years of age.
${ }^{\S}$ This case was vaccine-associated. The remaining 6 suspected cases with onset in 1994 have not yet been confirmed.
TTotal reported to the Division of Sexually Transmitted Diseases and HIV Prevention, National Center for Prevention Services, through second quarter 1994.

TABLE II. Cases of selected notifiable diseases, United States, weeks ending December 31, 1994, and January 1, 1994 (52nd Week)

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending December 31, 1994, and January 1, 1994 (52nd Week)

Reporting Area	Malaria	Measles (Rubeola)					Menin- goococcal Infections Mumps			Pertussis			Rubella		
		Indigenous		Imported*		Total Cum.									
	Cum.	1994	Cum.	1994	Cum.		Cum. 1994	1994	Cum.	1994	Cum. 1994	Cum. 1993	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	Cum.
UNITED STATES	1,065	10	707	-	188	312	2,638	9	1,322	105	3,590	6,586	1	209	192
NEW ENGLAND	79	-	14	-	14	63	142	-	26	36	515	834	-	131	10
Maine	6	-			4		23	-	3	3	21	20	-		1
N.H.	3	-	1	-	-	2	7	-	4	-	84	168	-	-	
Vt.	3	-	2	-	1	31	5	-	-		45	122	-		
Mass.	34	-	2	-	6	18	61	-	3	31	316	408	-	125	9
R.I.	10	-	4	-	3	2		-	4		7	14	-	3	
Conn.	23	-	4	-	-	9	46	-	12	2	42	102	-	3	-
MID. ATLANTIC	229	-	172	-	35	41	264	-	113	9	655	991	-	8	59
Upstate N.Y.	58	-	12	-	15	11	101	-	32	1	233	373	-	6	17
N.Y. City	86	-	11	-	4	19	11	-	16	-	209	116	-	1	22
N.J.	54	-	144	-	12	11	57	-	7	$-$	11	85	-	1	15
Pa.	31	-	5	-	4	-	95	-	58	8	202	417	-	-	5
E.N. CENTRAL	107	-	59	-	44	31	425	2	263	18	435	1,627	-	12	8
Ohio	20	-	15	-	2	9	121	2	77	4	162	523	-		1
Ind.	15	-	-	-	1	1	87	-	7	12	78	178	-	$\overline{-}$	3
III.	39	-	17	-	39	9	123	-	106		95	434	-	3	1
Mich.	31	-	24	-	2	6	59	-	59	2	50	116	-	9	2
Wis.	2	-	3	-	-	6	35	-	14	-	50	376	-	-	1
W.N. CENTRAL	45	-	126	-	44	3	179	1	68	5	230	626	-	2	1
Minn.	14	-	-	-	-	-	19	-	5	-	100	393	-		
lowa	5	-	6	-	1	-	20	-	16	-	23	38	-		
Mo.	13	-	118	-	42	1	87	1	41	-	47	144	-	2	1
N. Dak.	1	-	-	-	-	-	1	-	5	-	5	5	-		-
S. Dak.	-	-	-	-	-	-	9	-	-	-	26	8	-		
Nebr.	5	-	1	-	1	-	13	-	1	-	11	14	-	-	
Kans.	7	-	1	-	-	2	30	-	-	5	18	24	-	-	-
S. ATLANTIC	213	-	60	-	8	33	436	4	205	1	359	673	-	11	7
Del.	3			-			5				3	11	-		
Md.	86	-	3	-	2	4	37	1	67	-	75	133	-		3
D.C.	15	-		-			7			-	11	14	-		
Va.	37	-	1	-	2	4	66	1	47	-	36	75	-		
W. Va.		-	36	-			14	2	5	1	6	8	-		
N.C.	12	-	2	-	1	1	57	-	36	-	140	199	-		
S.C.	5	-		-	-	-	35	-	8	-	14	73	-	-	
Ga.	26	-	3	-			69		9	-	27	56	-	2	
Fla.	29	-	15	-	3	24	146	-	33	-	47	104	-	9	4
E.S. CENTRAL	32	-	28	-	-	1	160	-	27	-	123	297	-	-	1
Kу.	12	-		-	-	-	43	-	-	-	59	38	-		1
Tenn.	10	-	28	-	-	-	40	-	8	-	22	183	-	-	
Ala.	9	-	-	-	-	1	77	-	12	-	35	65	-	-	
Miss.	1	-	-	-	-	-	-	-	7	-	7	11	-	-	-
W.S. CENTRAL	76	-	11	-	8	11	344	-	184	4	77	239	-	4	24
Ark.	3	-	-	-	1	-	45	-	5	-	27	18	-	-	
La.	10	-	-	-	1	1	40	-	35	-	12	14	-	-	1
Okla.	7	-	-	-	-	-	38	-	23	4	36	86	-	4	1
Tex.	56	-	11	-	6	10	221	-	121	-	2	121	-	-	22
MOUNTAIN	40	2	157	-	20	7	170	-	156	27	521	464	-	5	12
Mont.	-	-	-	-	-	-	6	-	-		11	11	-		-
Idaho	2	-	1	-	-	-	17	-	10	11	172	101	-	-	2
Wyo.	1	-	-	-	-	-	9	-	3	-		2	-		
Colo.	19	-	17	-	3	3	40	-	3	-	125	187	-	-	3
N. Mex.	3	2	2	-			17	N	N	-	36	43	-	-	
Ariz.	9	-	5	-	4	3	50	-	95	16	148	70	-	-	2
Utah	4	-	132	-	2		19	-	26	-	26	45	-	4	4
Nev .	2	-	-	-	11	1	12	-	18	-	3	5	-	1	1
PACIFIC	244	8	80	-	15	122	518	2	280	5	675	835	1	36	70
Wash.	16	-	-	-			35		9		37	91	-		
Oreg.	14	-		-	2	4	107	N	N		43	106	-	3	
Calif.	197	-	56	-	9	96	361	1	248	3	573	619	1	28	41
Alaska	2	-	16	-		2	5		4	-	1	5	-	1	1
Hawaii	15	8	8	-	4	20	10	1	19	-	21	14	-	4	28
Guam	4	U	211	U	-	25	1	U	7	U	2		U	1	-
P.R.	3	-	13		-	356	15		2	-	2	11	-	-	-
V.I.			-	-	-	-	-	-	1	-	-	-	-	-	-
Amer. Samoa		U		U		-	-	U	1	U	2	2	U	-	-
C.N.M.I.	1	U	26	U	-	93	-	U	2	U	-	1	U	-	-

*For measles only, imported cases include both out-of-state and international importations.

[^3]TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending December 31, 1994, and January 1, 1994 (52nd Week)

Reporting Area	Syphilis (Primary \& Secondary)		ToxicShock Syndrome	Tuberculosis		Tularemia Cum. 1994	Typhoid Fever Cum. 1994	Typhus Fever (Tick-borne) (RMSF) Cum. 1994	Rabies, Animal Cum. 1994
	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \\ & \hline \end{aligned}$				
UNITED STATES	20,183	26,470	183	22,152	24,324	85	410	441	7,347
NEW ENGLAND	215	351	4	528	619	1	22	15	1,958
Maine	4	8	1	34	28	-	-	-	-
N.H.	4	25	-	16	26	-	-	-	212
V .	-	1	1	10	7	-	-	-	143
Mass.	90	123	2	272	370	1	18	7	730
R.I.	16	16	-	54	64	-	1		129
Conn.	101	178	-	142	124	-	3	8	744
MID. ATLANTIC	1,390	2,823	29	4,469	5,248	2	113	19	1,839
Upstate N.Y.	169	258	15	528	717	1	12	7	1,312
N.Y. City	583	1,210	-	2,509	3,003	1	72	1	,
N.J.	234	328	-	820	921	-	23	4	275
Pa .	404	1,027	14	612	607	-	6	7	252
E.N. CENTRAL	2,858	4,210	40	2,163	2,404	8	73	39	66
Ohio	1,157	1,209	11	345	309	1	7	22	4
Ind.	259	362	2	193	248	2	7	5	13
III.	845	1,604	12	1,108	1,281	3	46	10	19
Mich.	291	551	15	447	463	1	6	2	14
Wis.	306	484	-	70	103	1	7	-	16
W.N. CENTRAL	1,170	1,612	26	578	540	39	1	39	220
Minn.	55	59	1	130	96	1	-	-	17
Iowa	71	64	8	66	59	-	-	1	91
Mo.	980	1,354	7	245	256	25	1	20	26
N. Dak.	-	4	1	8	7	1	-	-	12
S. Dak.	1	2	-	27	16	2	-	13	39
Nebr.	11	10	4	19	23	3	-	1	
Kans.	52	119	5	83	83	7	-	4	35
S. ATLANTIC	5,397	6,495	8	3,992	5,191	2	50	215	1,982
Del.	27	94	-	40	66	-	1		41
Md.	334	365	-	348	401	1	14	25	520
D.C.	214	326	-	112	160	-	1	-	3
Va .	816	663	1	292	456	-	9	19	428
W. Va.	9	12	-	79	75	-	-	2	82
N.C.	1,640	1,903	1	567	594	-	1	88	177
S.C.	804	924	-	377	398	-	-	20	177
Ga .	808	1,081	1	672	753	1	2	56	366
Fla.	745	1,127	5	1,505	2,288	-	22	5	188
E.S. CENTRAL	3,897	4,071	6	1,392	1,708	2	4	47	223
Ky.	216	331	2	332	405	2	1	9	26
Tenn.	1,018	1,156	3	401	555	-	3	29	71
Ala.	631	861	1	433	487	-	-	2	126
Miss.	2,032	1,723	-	226	261	-	-	7	-
W.S. CENTRAL	4,303	5,479	2	3,014	2,844	17	16	53	645
Ark.	465	558	-	258	189	16	-	11	25
La.	1,653	2,598	-	193	357	-	3	-	69
Okla.	111	284	2	264	208	1	3	35	43
Tex.	2,074	2,039	-	2,299	2,090	-	10	7	508
MOUNTAIN	249	256	13	600	605	9	12	14	135
Mont.	4	1	-	24	22	3	-	4	22
Idaho	2	-	3	13	12	-	-	-	3
Wyo.	3	13	-	12	6	-	-	2	19
Colo.	129	90	6	21	108	1	3	4	15
N. Mex.	21	26		78	74	1	1	2	8
Ariz.	50	95	2	257	238	-	3	1	45
Utah	9	11	2	55	44	2	2	-	13
Nev.	31	20	-	140	101	2	3	1	10
PACIFIC	704	1,173	55	5,416	5,165	5	119	-	279
Wash.	35	56	3	266	275	-	4	-	-
Oreg.	21	40	-	90	-	2	5	-	12
Calif.	641	1,061	48	4,744	4,583	2	105	-	237
Alaska	4	8	-	63	56	1	-	-	30
Hawaii	3	8	4	253	251	-	5	-	-
Guam	11	4	-	170	84	-	1	-	-
P.R.	300	491	-	159	213	-	-	-	61
V.I.	28	42	-	-	2	-	-	-	-
Amer. Samoa	1	-	-	4	4	-	1	-	-
C.N.M.I.	2	7	-	36	47	-	1	-	-

U: Unavailable

TABLE III. Deaths in 121 U.S. cities,* week ending December 31, 1994 (52nd Week)

Reporting Area	All Causes, By Age (Years)						P\&I ${ }^{\dagger}$ Total	Reporting Area	All Causes, By Age (Years)						P\&I ${ }^{\dagger}$ Total
	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
NEW ENGLAND	604	432	101	46	13	12	61	S. ATLANTIC	1,189	744	235	156	29	22	83
Boston, Mass.	147	108	21	15	2	1	15	Atlanta, Ga.	160	103	29	25	2	1	8
Bridgeport, Conn.	41	33	5	2	-	1	2	Baltimore, Md.	170	109	36	24	1	-	25
Cambridge, Mass.	21	17	2	2	-	-	2	Charlotte, N.C.	79	49	18	8	1	3	9
Fall River, Mass.	U	U	U	U	U	U	U	Jacksonville, Fla.	115	78	21	15	-	1	11
Hartford, Conn.	51	36	5	4	4	2	2	Miami, Fla.	107	64	21	17	3	2	-
Lowell, Mass.	28	19	5	1	1	2	1	Norfolk, Va.	46	24	9	6	6	1	1
Lynn, Mass.	15	11	3	1	-	-	1	Richmond, Va.	82	58	14	8	2	-	5
New Bedford, Mass.	20	12	7	1	-	-	1	Savannah, Ga.	51	37	10	4	-	-	5
New Haven, Conn.	45	26	11	6	2	-	1	St. Petersburg, Fla.	43	28	6	6	1	2	1
Providence, R.I.	38	21	10	5	-	2	4	Tampa, Fla.	158	107	33	12	3	3	16
Somerville, Mass.	8	6	1	1	-	-	1	Washington, D.C.	164	80	34	31	10	9	2
Springfield, Mass.	69	52	10	4	1	2	10	Wilmington, Del.	14	7	4	-	-	-	-
Waterbury, Conn.	40	31	6	1	2		7								
Worcester, Mass.	81	60	15	3	1	2	14	E.S. CENTRAL Birmingham, Ala.	573 60	375 38	117 12	54 7	15 2	12	$\begin{array}{r} 41 \\ 4 \end{array}$
MID. ATLANTIC	2,505	1,719	427	268	46	44	132	Chattanooga, Tenn.	19	10	4	1	2	2	-
Albany, N.Y.	29	20	4	4	-	1	-	Knoxville, Tenn.	62	40	9	9	4	-	4
Allentown, Pa.	31	28	1	1	1	-	-	Lexington, Ky.	43	29	10	4	-	-	4
Buffalo, N.Y.	111	85	23	2	-	1	19	Memphis, Tenn.	166	110	31	16	4	5	19
Camden, N.J.	25	17	5	1	2	-	3	Mobile, Ala.	30	24	2	3	1	-	-
Elizabeth, N.J.	29	22	5	2	-	-	-	Montgomery, Ala.	48	32	13	2	-	1	2
Erie, Pa.§	40	29	6	4	1	-	-	Nashville, Tenn.	145	92	36	12	2	3	8
Jersey City, N.J.	50	37	4	8	-	1	3								
New York City, N.Y.	1,562	1,045	290	180	24	22	61	W.S. CENTRAL	934	592	176	90	44	32	56
Newark, N.J.	48	18	14	12	2	2	3	Austin, Tex.	67 25	40	11	10	3	3	6
Paterson, N.J.	32	15	1	9	4	3	3	Baton Rouge, La.	25	18	4	7	2	2	-
Philadelphia, Pa.	196	130	35	22	4	5	14	Corpus Christi, Tex.	37	22	5	7	1	2	1
Pittsburgh, Pa.§	44	31	8	3	2	-	3	Dallas, Tex.	208	117	52	25	9 3	5	4
Reading, Pa.	20	15	2	3	-	-	2	El Paso, Tex.	66	47	8	5	3	3	6
Rochester, N.Y.	98	74	8	10	2	4	8	Ft. Worth, Tex.	98	62	18	13	4	1	6
Schenectady, N.Y.	29	24	2	3	-	-	-	Houston, Tex.	76	U	18	5	7	U	U
Scranton, Pa.§	26	19	5	-	2	-	1	Little Rock, Ark.	76	40	18	5	7	6	6
Syracuse, N.Y.	74	57	10	3	1	3	5	New Orleans, La.	56	33	12	6	4	1	11
Trenton, N.J.	38	33	2	1	-	2	7	San Antonio, Tex.	159	115	24	10	4	6	11
Utica, N.Y.	23	20	2	-	1	-	-	Shreveport, La.	53	38	${ }^{6}$	5	4	5	8
Yonkers, N.Y.	U	U	U	U	U	U	U	Tulsa, Okla.	89	60	18	3	3	5	8
E.N. CENTRAL	2,096	1,334	406	217	90	49	106	MOUNTAIN	836	564	143	72	36	20	59
Akron, Ohio	63	46	11	2	-	4	-	Albuquerque, N.M.	95	57	15	13	7	3	3
Canton, Ohio	42	35	5	1	-	1	1	Colo. Springs, Colo.	57	42	9	4	2	-	5
Chicago, III.	433	170	100	99	55	9	12	Denver, Colo.	89	62	10	11	2	4	11
Cincinnati, Ohio	192	140	32	10	5	5	24	Las Vegas, Nev.	189	131	36	13	7	2	8
Cleveland, Ohio	124	83	21	13	5	2	2	Ogden, Utah	20	17	2	1	12	,	3
Columbus, Ohio	175	113	41	13	3	5	11	Phoenix, Ariz.	142	84	23	18	12	4	10
Dayton, Ohio	103	80	16	4	-	3	7	Pueblo, Colo.	24	20	1	2	1	5	10
Detroit, Mich.	185	102	42	28	8	5	5	Salt Lake City, Utah	100	67	22	6	3	5	10
Evansville, Ind.	23	16	6	1	-	-		Tucson, Ariz.	120	87	25	4	2	2	9
Fort Wayne, Ind.	62	49	9	2	2	-	2	PACIFIC	1,343	896	223	133	37	29	96
Gary, Ind.	15	5	8	2	-	-	-	Berkeley, Calif.	, 20	13	1	3	-	3	2
Grand Rapids, Mich.	. 67	57	5	4	-	1	5	Fresno, Calif.	U	U	U	U	U	U	U
Indianapolis, Ind.	188	133	39	10	4	2	15	Glendale, Calif.	16	8	5		2		1
Madison, Wis.	U	U	U	U	U	U	U	Honolulu, Hawaii	71	48	12	5	2	3	3
Milwaukee, Wis.	109	78	17	9	4	1	4	Long Beach, Calif.	79	57	13	6	1	2	9
Peoria, III.	49	27	13	4	2	5	1	Los Angeles, Calif.	346	215	56	49	14	6	10
Rockford, III.	52	40	5	4	2	1	3	Pasadena, Calif.	29	22	4	2	1	-	2
South Bend, Ind.	47	40	6	1	-	4	3	Portland, Oreg.	145	95	27	18	3	2	13
Toledo, Ohio	118	84	19	10	1	4	11	Sacramento, Calif.	U	U	U	U	U	U	\cup
Youngstown, Ohio	49	36	11	-	1	1	-	San Diego, Calif.	\cup	\cup	\cup	U	U	\cup	U
W.N. CENTRAL	721	507	107	56	15	24	48	San Francisco, Calif.	155	97	25	15	-	1	15
Des Moines, lowa	58	41	9	5	-	3	7	San Jose, Calif.	175	122	31	14	3	5	16
Duluth, Minn.	21	14	4	2	1		1	Santa Cruz, Calif.	30 134	22	5	2	1	2	6
Kansas City, Kans.	34	26	5	3	-	-	1	Seattle, Wash.	134	93	21	9	9	2	4
Kansas City, Mo.	108	68	17	9	1	1	5	Spokane, Wash. Tacoma, Wash.	93	62			1	4	10
Lincoln, Nebr.	24	19	3	1	-	1	1	Tacoma, Wash.	93	62	17	9	1	4	10
Minneapolis, Minn.	122	95	15	8	1	3	11	TOTAL	10,801 ${ }^{\text {¹ }}$	7,163	1,935	1,092	325	244	682
Omaha, Nebr.	66	40	13	5	3	5	4								
St. Louis, Mo.	142	99	15	13	4	11	10								
St. Paul, Minn.	68	47	13	5	3	-	7								
Wichita, Kans.	78	58	13	5	2	-	1								

[^4]The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 783-3238.

The data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Inquiries about the MMWR Series, including material to be considered for publication, should be directed to: Editor, MMWR Series, Mailstop C-08, Centers for Disease Control and Prevention, Atlanta, GA 30333; telephone (404) 332-4555.

All material in the MMWR Series is in the public domain and may be used and reprinted without special permission; citation as to source, however, is appreciated.

Director, Centers for Disease Control and Prevention David Satcher, M.D., Ph.D.
Deputy Director, Centers for Disease Control and Prevention
Claire V. Broome, M.D.
Director, Epidemiology Program Office
Stephen B. Thacker, M.D., M.Sc.

Editor, MMWR Series
Richard A. Goodman, M.D., M.P.H.
Managing Editor, MMWR (weekly) Karen L. Foster, M.A.
Writers-Editors, MMWR (weekly)
David C. Johnson
Patricia A. McGee
Darlene D. Rumph-Person
Caran R. Wilbanks

[^0]: *Mortality data were not available for 1992.
 \dagger Intercensal population estimates were used to calculate age-adjusted rates standardized to the 1980 U.S. population.

[^1]: *This imported case occurred in a 2-year-old child who had onset of paralysis on December 15, 1993, in Nigeria and was brought for tertiary hospital care to New York 2 weeks later; no poliovirus was isolated from this child.

[^2]: *Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 ${ }^{\dagger}$ Pneumonia and influenza.
 ${ }^{\S}$ Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 ${ }^{9}$ Total includes unknown ages.
 U: Unavailable.

[^3]: N : Not notifiable
 ${ }^{\dagger}$ International
 § Out-of-state

[^4]: ${ }^{*}$ Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 ${ }^{\dagger}$ Pneumonia and influenza.
 ${ }^{\S}$ Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 ${ }^{9}$ Total includes unknown ages.
 U: Unavailable.

