
QMTest: User’s Guide and Reference

CodeSourcery, LLC

QMTest: User’s Guide and Reference
by CodeSourcery, LLC
Copyright © 2002, 2003 CodeSourcery LLC

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

Open Publication work may be reproduced and distributed in whole or in part, in any medium physical or electronic,
provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference is displayed
in the reproduction.

Proper form for incorporation of this license by reference is as follows:

Copyright © 2000, 2001 by CodeSourcery LLC. This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License.

Commercial redistribution of material covered by this license is permitted.

Any publication in standard (paper) book form shall require the citation of the original author and (where applicable)
publisher.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee(s).

III. SCOPE OF LICENSE

The license terms below apply to all Open Publication works.

AGGREGATION. Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate work shall contain a
notice specifying the inclusion of the Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the
license remain in force.

NO WARRANTY. Open Publication works are licensed and provided ‘as is’ without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a
warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations, anthologies, compilations and partial
documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to normal academic
citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or imply endorsement of the resulting document
without the original author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors
of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to
provide updated documents. This notification should describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or else described in an
attachment to the document.

Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy and
CD-ROM expression of an Open Publication-licensed work to its author(s).

Table of Contents
1. Introduction ...1

2. Getting Started with QMTest...2

2.1. Setting Up...2
2.2. Starting the Graphical Interface...3
2.3. Running Tests...3
2.4. Setting Expectations...4
2.5. Examining Tests...4
2.6. Modifying and Creating Tests..5
2.7. Using the Command-Line Interface...5
2.8. Expectations on the Command Line..7
2.9. Reviewing Results..8

3. Using QMTest..10

3.1. QMTest Concepts...10
3.1.1. Tests...10
3.1.2. Resources...11
3.1.3. Context...11
3.1.4. Test Results..12

3.1.4.1. Outcomes..12
3.1.4.2. Annotations...12

3.1.5. Test Suite...12
3.1.5.1. Implicit Test Suites..13

3.1.6. Test Database...13
3.1.7. Targets..13

3.2. Running Tests...14
3.2.1. Ordering and Dependencies...14
3.2.2. The Context...15

3.3. Test Database Contents..15
3.4. Invoking QMTest..15

3.4.1.qmtest..16
3.4.1.1. Synopsis..16
3.4.1.2. Options..16

3.4.2.qmtest create..16
3.4.2.1. Summary...16
3.4.2.2. Synopsis..16
3.4.2.3. Description..17
3.4.2.4. Example..17

3.4.3.qmtest create-target...17
3.4.3.1. Summary...18
3.4.3.2. Synopsis..18
3.4.3.3. Description..18

3.4.4.qmtest create-tdb...18
3.4.4.1. Summary...18
3.4.4.2. Synopsis..18
3.4.4.3. Description..18

3.4.5.qmtest gui ...19

iv

3.4.5.1. Summary...19
3.4.5.2. Synopsis..19
3.4.5.3. Description..19

3.4.6.qmtest extensions...20
3.4.6.1. Summary...21
3.4.6.2. Synopsis..21
3.4.6.3. Description..21

3.4.7.qmtest register..21
3.4.7.1. Summary...21
3.4.7.2. Synopsis..21
3.4.7.3. Description..21

3.4.8.qmtest run...22
3.4.8.1. Summary...22
3.4.8.2. Synopsis..22
3.4.8.3. Description..22

3.4.9.qmtest summarize..24
3.4.9.1. Summary...24
3.4.9.2. Synopsis..24
3.4.9.3. Description..24

3.4.10. Environment Variables...25
3.4.11. Configuration Variables...25
3.4.12. Return Value..25

3.5. Test and Resource Classes..26
3.5.1. Test Classes..26

3.5.1.1.command.ExecTest ..26
3.5.1.2.command.ShellCommandTest ...27
3.5.1.3.command.ShellScriptTest ...28

3.6. Test Targets...28
3.6.1. Target Specification...28
3.6.2. Target Classes..29

3.6.2.1.SerialTarget ...29
3.6.2.2.ThreadTarget ...29
3.6.2.3.ProcessTarget ...29
3.6.2.4.RemoteShellTarget ..30

4. Extending QMTest..31

4.1. Extension Classes...31
4.2. Field Classes...32

4.2.1. Built-In Field Classes..32
4.2.2. Writing Field Classes...33

4.3. Writing Test Classes...34
4.4. Writing Resource Classes...35
4.5. Writing Database Classes...35
4.6. Registering an Extension Class..36

5. The QM Configuration File ...37

5.1. Configuration Variables..37

v

Chapter 1. Introduction
QMTest is a testing tool. You can use QMTest to test a software application, such as a database, compiler, or web
browser. You can even QMTest to test a physical system (like a valve or thermometer) if you have a way of
connecting it to your computer.

Code that has not been tested adequately generally does not work. Yet, many applications are deployed without
adequate testing, often with catastrophic results. It is much more costly to find defects at the end of the release cycle
than at the beginning. By making it easy to develop tests, and execute those tests to validate the application, QMTest
makes it easy to find problems easier, rather than later.

QMTest can be extended to handle any application domain and any test format. QMTest works with existing
testsuites, no matter how they work or how they are stored. QMTest’s open and pluggable architecture supports a
wide variety of applications.

QMTest features both an intuitive graphical user interface and a conventional command-line interface. QMTest can
run tests in serial, in parallel on a single machine, or across a farm of possibly heterogeneous machines.

CodeSourcery provides support for QMTest. CodeSourcery can help you install, integrate, and customize QMTest.
For more information, visit the QMTest web site (http://www.qmtest.com).

1

Chapter 2. Getting Started with QMTest
QMTest is an general-purpose, cross-platform software testing tool. QMTest can be used to test compilers, databases,
graphical user interfaces, or embedded systems. QMTest provides a convenient graphical user interface for creating,
managing, and executing tests, provides support for parallel test execution, and can be extended in a variety of ways.

This chapter will show you how to use QMTest by example. You will learn how to use QMTest to create tests, run
tests, and examine the results.

2.1. Setting Up
A test database is a directory that QMTest uses to store tests. If you want to create a new, empty test database from
scratch, you use theqmtest create-tdbcommand, but for this tutorial, you should use the sample test database
provided with QMTest. Since you’ll modify the test database later in the tutorial, start by making a copy of it. Copy
the entire test database directory tree to another location. If you’ve installed QMTest in the default location you can
make a copy of the sample database by running this command on a UNIX system:

> cp -r /usr/share/qm/tutorial/test/tdb tdb

On a Windows system, use this command at a DOS1 prompt:

> xcopy c:\Python23\qm\tutorial\test\tdb tdb\ /s

The exact paths to use depend on exactly how you have built and installed QMTest. The paths above are correct for
the binary RPM and Windows packages distributed by CodeSourcery. If you build from the QMTest source
distribution, the tutorial may be in another location, such as/usr/share/qm .

Then, enter the new directory you have created. On both UNIX and Windows systems, you can do this with this
command:

> cd tdb

Make sure that QMTest is in your PATH so that the operating system can find it. On UNIX, you can use this
command:

> PATH=/usr/bin:${PATH}; export PATH

in the Bourne shell. In the C shell, use:

> setenv PATH /usr/bin:${PATH}

On Windows, use:

> PATH C:\Python23\Scripts;%PATH%

2

Chapter 2. Getting Started with QMTest

If you are not using Python 2.3, replaceC:\Python23 with the directory containing your Python installation.

In order to avoid having to retype these commands every time you want to use QMTest, you can set up your system
so that these commands are executed automatically when you log in. Consult your system’s manuals to find out how
to do this.

On Windows, every command in this manual that begins withqmtestshould be read as if it starts withqmtest.py.
For example, if this tutorial instructs you to type:

> qmtest run

you should instead type:

> qmtest.py run

on a Windows system.

2.2. Starting the Graphical Interface
To examine the tests in the test database, you can use QMTest’s graphical user interface. To start the graphical user
interface, use theqmtest guicommand, like this:

> qmtest gui

You will see output similar to:

QMTest running at http://127.0.0.1:1158/test/dir

After a moment, a new web browser window will open, and you will see the QMTest graphical user interface (GUI).
If a web browser window does not open, you will have to manually enter the URL that QMTest printed out
(http://127.0.0.1:1158/test/dir in the example above) into your browser. Alterantively, you can edit your
QM configuration fileto tell QM how to invoke your browser and then start the GUI again.

As you can see, QMTest creates a graphical user interface using your web browser.

The page you see in your browser shows the contents of the test database. You can see that there are three tests in the
database, namedexec0 , exec1 , andexec2 . You can always click onDirectory under QMTest’sView menu to see
this display.

2.3. Running Tests
To run all the tests, chooseAll Tests from theRun menu. QMTest will display the test results page. As the tests run,
this page will be automatically updated. (If you do not want to wait for QMTest to update the page, you can manually
reload the page in your browser.) After a few moments, QMTest will display the test results for the three tests in the
database. The upper part of the screen gives a statistical overview of the test results. Of the three tests, two passed.

3

Chapter 2. Getting Started with QMTest

However, one test failed. You can use this statistical information to get a quick overview of your application’s
correctness.

In addition to showing you how many tests passed and how many failed, QMTest shows you whether how many tests
hadunexpectedpass or fail outcomes. If you know that certain tests will fail, you can tell QMTest that they are
expected to fail. Then, if you are testing a change to your application, you can easily see whether your change made
things better or worse. As long as there are no unexpected failures, your change did not cause any problems.

If you have not explicitly set up an expectation for a test, QMTest assumes that the test is expected to pass. That is
why QMTest indicated that there was one unexpected failure when you ran the tests.

Below the statistics section, QMTest displays detailed information about each test. In this case, you can see that the
exec1 test is the one that is failing. You can click on theDetails link to get additional information about why a
particular test is failing.

2.4. Setting Expectations
The easiest way to create expectations is to tell QMTest that you expect future results to be the same as the results
you just obtained. Save the results of your test run by choosingSave Results from theFile menu. QMTest will
prompt you for a file to use to store the results of your test run. If you exit QMTest, you can reload this file to recover
your test results without rerunning the tests.

You can also use this file to set QMTest’s expectations. ChooseLoad Expectations from theFile menu and provide
the same file name that you used when you told QMTest when you asked it to save your results earlier.

Then, QMTest will redisplay the test results, but now you will see that there are no unexpected failures; the current
results match your expectations.

You can also manually edit expectations. Click on theExpectation link next to a particular test to set the
expectation. To set the expectation forexec1 back toPASS, click on theExpectation link next toexec1 , choose
PASS, and click theOK button. You will see that now theexec1 failure is unexpected again. You can save your
expectations by choosingSave Expectations from theFile menu.

2.5. Examining Tests
Click on theexec1 label to examine the failing test. QMTest will display information about the test. The most
important information about the test is itstest class. This test is an instance of thepython.ExecTest class. The test
class indicates what kind of testexec1 is. QMTest gives a brief description of the test class in the GUI; a
python.ExecTest checks that a Python expression evaluates to true.

For more details about the test class, you can click on theHelp link to the right of the description. QMTest will pop
up a window that describes the test in more detail. In summary, apython.ExecTest executes some setup code.
Then, a Python expression is evaluated. If the expression evaluates to true, the test passes; otherwise, it fails.

The setup code and the expression are theargumentsto the test class. Every test class takes arguments; the arguments
are what differentiate one instance of a test class from another. QMTest displays the arguments for theexec1 test in
the GUI. In this case, the sequence of statements is simply the single statementx = 2 , which assigns2 to the
variablex . The expression isx + x == 5 , which comparesx + x with 5. Sincex is 2 in this case, this expression
evaluates to false. That is why the test fails.

4

Chapter 2. Getting Started with QMTest

You can click on theHelp link next to each argument to get more details about exactly what the argument is for.

2.6. Modifying and Creating Tests
To fix the test, you need to change the arguments to the test. SelectEdit Test from theEdit menu. QMTest will
display a form that allows you to change the arguments to the test.

Change the second argument, labeled "Python Expression," tox + x == 4 . Then click on theOK button at the
bottom of the page to save your changes. ChooseThis Test from theRun menu and observe that the test now passes.

Creating a new test works in a similar way. ChooseDirectory under theView menu to return to the main QMTest
page. Then, selectNew Test from theFile menu to create a new test. QMTest displays a form that contains two
fields: the test name, and the test class. The test name identifies the test; the test class indicates what kind of test will
be created.

Test names must be composed entirely of lowercase letters, numbers, the “_” character, and the “.” character. You
can think of test names like file names. The “.” character takes the place of “/” on UNIX or “\” on Windows; it allows
you to place a test in a particulardirectory. For example, the test namea.b.c names a test namedc in the directory
a.b . The directorya.b is a subdirectory of the directorya. By organizing your tests in directories, you will make it
easier to keep track of your tests. In addition, QMTest can automatically run all the tests in a particular directory, so
by using directories you will make it easy to run a group of related tests at once.

Entercommand.test1 for the test name. This will create a new test namedtest1 in thecommanddirectory.
Choosecommand.ShellCommandTest as the test class. This kind of test runs a command and compares its actual
output against the expected output. If they match, the test passes. This test class is useful for testing many programs.
Click on theNext button to continue.

Now, QMTest will present you with a form that looks just like the form you used to editexec1 , except that the
arguments are different. The arguments are different because you’re creating a different kind of test. Enterecho

test in theCommand field. This command will produce an output (the wordtest), so find theStandard Output
box and entertest in this box. When you are done, click theOK button at the bottom of the form.

Now you can selectThis Test from theRun menu to run the test.

When you’re done experimenting with QMTest, chooseExit from theFile menu.

2.7. Using the Command-Line Interface
All of QMTest’s functionality is available from the command-line, as well as in the graphical user interface. When
you invokeqmteston the command line, you specify a command argument, which tells the program which action to
perform. Some commands require additional options and arguments, which you place after the command. There are
a few options that apply to all commands; to use these options place them before the command name. For example,
in the command:

> qmtest -D . run -f full exec1

the-D . option is a generalqmtestoption,run is the QMTest command, the-f full applies to therun command,
andexec1 is an argument to the run command. This command tests QMTest to run theexec1 test from the test
database intdb , and to use thefull format when displaying the results.

5

Chapter 2. Getting Started with QMTest

To see a list of available commands, and general options toqmtest, invoke it with the--help (or -h) option. To see
a description of each command, and additional options specific to that command, invokeqmtestcommand --help.

By this point, you have modified the test database using the GUI and have fixed the failing test. Recreate the original
database now by removing and recreating thetdb directory. On a UNIX system use these commands:

> cd ..
> rm -rf tdb
> cp -r /usr/share/qm/tutorial/test/tdb tdb
> cd tdb

On a Windows system, use these commands instead:

> cd ..
> rmdir /s tdb
> xcopy c:\Python23\qm\tutorial\test\tdb tdb\ /s
> cd tdb

The command for running tests isqmtest run. Assuming you made a copy of the example test database as described
in the previous section, execute the following command to run all the tests in the database:

> qmtest run

QMTest runs the tests, and prints a summary of the test run:

--- TEST RESULTS ---

exec0 : PASS

exec1 : FAIL

Expression evaluates to false.

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

--- TESTS THAT DID NOT PASS --

exec1 : FAIL

Expression evaluates to false.

6

Chapter 2. Getting Started with QMTest

--- STATISTICS ---

3 tests total

1 (33%) tests FAIL

2 (67%) tests PASS

QMTest shows you the result of the tests as they execute. Then, there is a summary description containing statistics
similar to those shown in the graphical user interface. Finally, QMTest lists the tests that did not pass, along with the
cause of the failure.

2.8. Expectations on the Command Line
When you run QMTest on the command line, it automatically creates a results file calledresults.qmr . You can
specify a different filename with the-o option. Run this command:

> qmtest run -o expected.qmr

to save the results to a file namedexpected.qmr instead of the defaultresults.qmr .

Now, when you rerun the tests you can tell QMTest to useexpected.qmr as theexpected results file, like this:

> qmtest run -O expected.qmr

QMTest will rerun the tests, but this time it will not mention the failure ofexec1 . The output will look like:

--- TEST RESULTS ---

exec0 : PASS

exec1 : XFAIL

Expression evaluates to false.

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

--- TESTS WITH UNEXPECTED OUTCOMES ---

None.

7

Chapter 2. Getting Started with QMTest

--- STATISTICS ---

3 tests total

3 (100%) tests as expected

Note that QMTest indicates that there were no tests with unexpected outcomes, even thoughexec1 still fails. The
XFAIL notation indicates that the test failed, but that failure was expected. In contrast,XPASSmeans that a test
passed unexpectedly.

2.9. Reviewing Results
You can use the results file generated by QMTest to get additional information about the tests that failed. The default
results file name isresults.qmr and is placed in the directory where you ran QMTest.

To examine the results file, use thesummarizecommand, like this:

> qmtest summarize -f full

The-f full option indicates that the output should be displayed in more detail. The output will look like:

--- TEST RESULTS ---

exec0 : PASS

qmtest.target:

local

exec1 : FAIL

Expression evaluates to false.

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

qmtest.target:

local

--- TESTS THAT DID NOT PASS --

exec1 : FAIL

Expression evaluates to false.

8

Chapter 2. Getting Started with QMTest

--- STATISTICS ---

3 tests total

1 (33%) tests FAIL

2 (67%) tests PASS

The detailed information indicates what went wrong. The test value was0 which is considered false by Python. The
information displayed by the “full” format is domain-dependent; it depends on the kind of application you are
testing. The tests in the sample database test basic functionality of the Python interpreter, so the full report contains
information about Python concepts called exceptions and tracebacks. If you were testing a different application, the
full report would contain different information. For example, if you were testing a database, the detailed results
might refer to queries and records.

Notes
1. Under Windows, you must use the standard Windows command shell (DOS) to run QMTest; alternative shells

(such as Cygwin) will not work with QMTest.

9

Chapter 3. Using QMTest
This chapter describes QMTest in more detail. It explains the fundamental concepts that QMTest uses, the test
classes that come with QMTest, and how to extend QMTest to support new application domains.

The central principle underlying the design of QMTest is that the problem of testing can be divided into a
domain-dependent problem and a domain-independent problem. The domain-dependent problem is deciding what to
test and how to test it. For example, should a database be tested by performing unit tests on the C code that makes up
the database, or by performing integration tests using SQL queries? How should the output of a query asking for a set
of records be compared to expected output? Does the order in which records are presented matter? These are
questions that only someone who understands the application domain can answer.

The domain-independent part of the problem is managing the creation of tests, executing the tests, and displaying the
results for users. For example, how does a user create a new test? How are tests stored? Should failing tests be
reported to the user, even if the failure was expected? These questions are independent of the application domain;
they are just as relevant for compiler tests as they are for database tests.

QMTest is intended to solve the domain-independent part of the problem and to offer a convenient, powerful, and
flexible interface for solving the domain-dependent problem. QMTest is both a complete application, in that it can be
used “out of the box” to handle many testing domains, and infrastructure, in that it can be extended to handle other
domains.

3.1. QMTest Concepts
This section presents the concepts that underlie QMTest’s design. By understanding these concepts, you will be able
to better understand how QMTest works. In addition, you will find it easier to extend QMTest to new application
domains.

3.1.1. Tests
A testchecks for the correct behavior of the target application. What constitutes correct behavior will vary depending
on the application domain. For example, correct behavior for a database might mean that it is able to retrieve records
correctly while correct behavior for a compiler might mean that it generates correct object code from input source
code.

Every test has a name that uniquely identifies the test, within a giventest database. Test names must be composed
entirely of lowercase letters, numbers, the “_” character, and the “.” character. You can think of test names like file
names. The “.” character takes the place of “/”; it allows you to place a test in a particulardirectory. For example, the
test namea.b.c names a test namedc in the directorya.b . The directorya.b is a subdirectory of the directorya.

Every test is an instance of some test class. The test class dictates how the test is run, what constitutes success, and
what constitutes failure. For example, thecommand.ExecTest class that comes with QMTest executes the target
application and looks at its output. The test passes if the actual output exactly matches the expected output.

The arguments to the test parameterize the test; they are what make two instances of the same test class different
from each other. For example, the arguments tocommand.ExecTest indicate which application to run, what
command-line arguments to provide, and what output is expected.

10

Chapter 3. Using QMTest

Sometimes, it may be pointless to run one test unless another test has passed. Therefore, each test can have a set of
associatedprerequisite tests. If the prerequisite tests did not pass, QMTest will not run the test that depends upon
them.

3.1.2. Resources
Some tests take a lot of work to set up. For example, a database test that checks the result of SQL queries may
require that the database first be populated with a substantial number of records. If there are many tests that all use
the same set of records, it would be wasteful to set up the database for each test. It would be more efficient to set up
the database once, run all of the tests, and then remove the databases upon completion.

You can use aresourceto gain this efficiency. If a test depends on a resource, QMTest will ensure that the resource is
available before the test runs. Once all tests that depend on the resource have been run QMTest will destroy the
resource.

Just as every test is an instance of atest class, every resource is an instance of aresource class. The resource class
explains how to set up the resource and how to clean up when it is no longer needed. The arguments to the resource
class are what make two instances of the same resource class different from each other. For example, in the case of a
resource that sets up a database, the records to place in the database might be given as arguments. Every resource has
a name, using the same format that is used for tests.

Under some circumstances (such as running tests on multiple machines at once), QMTest may create more than one
instance of the same resource. Therefore, you should never depend on there being only one instance of a resource. In
addition, if you have asked QMTest to run tests concurrently, two tests may access the same resource at the same
time. You can, however, be assured that there will be only one instance of a particular resource on a particular target
at any one time.

Tests have limited access to the resources on which they depend. A resource may place additional information into
the context (Section 3.1.3) that is visible to the test. However, the actual resource object itself is not available to tests.
(The reason for this limitiation is that for a target consisting of multiple processes, the resource object may not be
located in the process as the test that depends upon it.)

Setting up or cleaning up a resource produces a result, just like those produced for tests. QMTest will display these
results in its summary output and record them in the results file.

3.1.3. Context
When you create a test, you choose arguments for the test. The test class uses this information to run the test.
However, the test class may sometimes need information that is not available when the test is created. For example, if
you are writing compiler tests to verify conformance with the C programming language specification, you do not
know the location of the C compiler itself. The C compiler may be installed in different locations on different
machines.

A contextgives users a way of conveying this kind of information to tests. The context is a set of key/value pairs. The
keys are always strings. The values of all context properties provided by the user are strings. In general, all tests in a
given use of QMTest will have the same context. However, when a resource is set up, it may place additional
information in the context of those tests that depend upon it. The values inserted by the resource may have any type,
so long as they can be "pickled" by Python.

11

Chapter 3. Using QMTest

All context properties whose names begin with "qmtest. " are reserved for use by QMTest. The values inserted by
QMTest may have any type. Test and resource classes should not depend on the presence or absence of these
properites.

3.1.4. Test Results
A result is anoutcometogether with someannotations. The outcome indicates whether the test passed or failed. The
annotations give additional information about the result, such as the manner in which the test failed, the output the
test produced, or the amount of time it took to run the test.

3.1.4.1. Outcomes

The outcome of a test indicates whether it passed or failed, or whether some exceptional event occurred. There are
four test outcomes:

• PASS: The test succeeded.

• FAIL: The test failed.

• ERROR: A problem occurred in the test execution environment, rather than in the tested system. For example, this
outcome is used when the test class attempted to run an executable in order to test it, but could not because the
system call to create a new process failed.

This outcome may also indicate a defect in QMTest or in the test class.

• UNTESTED: QMTest did not attempt to execute the test. For example, this outcome is used when QMTest
determines that a prerequisite test failed.

3.1.4.2. Annotations

An annotation is a key/value pair. Both the keys and values are strings. The value is HTML. When a test (or
resource) runs it may add annotations to the result. These annotations are displayed by QMTest and preserved in the
results file. If you write your own test class, you can use annotations to store information that will make your test
class more informative.

3.1.5. Test Suite
A test suiteis a collection of tests. QMTest can run an entire test suite at once, so by grouping tests together in a test
suite, you make it easier to run a number of tests at once. A single test can be a member of more than one test suite.
A test suite can contain other test suites; the total set of tests in a test suite includes both those tests included directly
and those tests included as part of another test suite. Every test suite has a name, following the same conventions
given above for tests and resources.

12

Chapter 3. Using QMTest

One use of test suites is to provide groups of tests that are run in different situations. For example, thenightly test
suite might consist of those tests that should be run automatically every night, while thecheckin test suite might
consist of those tests that have to pass before any changes are made to the target application.

3.1.5.1. Implicit Test Suites

Section 3.1.1explains how you may arrange tests in a tree hierarchy, using a period (“. ”) as the path separator in test
names. QMTest defines animplicit test suitefor each directory. The name of these implicit test suites is the same as
the name of the directory. The implicit test suite corresponding to a directory contains all tests in that directory or its
subdirectories.

Consider, for example, a test database which contains tests with these names:

back_end.db_1
back_end.db2
front_end.cmdline
front_end.gui.widget_1
front_end.gui.widget_2

For this test database, QMTest defines implicit test suites with IDsback_end , front_end , andfront_end.gui .
The test suitefront_end contains the testsfront_end.cmdline , front_end.gui.widget_1 , and
front_end.gui.widget_2 .

The suite named ". " (a single period) is the implicit test suite corresponding to the root directory in the test database.
This suite therefore contains all tests in the database. For example, the command

> qmtest run .

is equivalent to:

> qmtest run

Both commands run all tests in the database.

3.1.6. Test Database
A test databasestores tests, test suites, and resources. When you ask QMTest for a particular test by name, it queries
the test database to obtain the test itself. QMTest stores a test database in a single directory, which may include many
files and subdirectories.

In general, QMTest can only use one test database at a time. However, it is possible to create a test database which
contains other test databases. This mechanism allows you to store the tests associated with different parts of a large
application in different test databases, and still combine them into a single large test database when required.

A single test database can store many different kinds of tests. By default, QMTest stores tests, resources, and test
suites in the test database using subdirectories containing XML files. Generally, there should be no need to examine
or modify these files directly. However, the use of an XML format makes it easy for you to automatically generate
tests from another program, if required.

13

Chapter 3. Using QMTest

3.1.7. Targets
A target is QMTest’s abstraction of a machine. By using multiple targets, you can run your tests on multiple
machines at one. If you have many tests, and many machines, you can greatly reduce the amount of time it takes to
run all of your tests by distributing the tests across multiple targets.

By default, QMTest uses only one target: the machine on which you are running QMTest. You may specify other
targets by creating a target file, which lists the available targets and their attributes, and specifying the target file
when you invokeqmtest.

Each target is a member of a singletarget group. All machines in the same target group are considered equivalent. A
target group is specified by a string. If you are testing software on multiple platforms at once, the target group might
correspond to machines running the same operating system. For example, all Intel 80386 compatible machines
running GNU/Linux might be in the “i386-pc-linux-gnu ” target group.

Section 3.6describes how you specify and use targets with QMTest.

3.2. Running Tests
To run one or more tests, use theqmtest run command. Each invocation of theqmtest run command is a single test
run, and produces a single set of test results and statistics. Specify as arguments the names of tests and test suites to
run. Even if you specify a test more than once, either directly or by incorporation in a test suite, QMTest runs it only
once.

If you wish to run all tests in the test database, use the implicit test suite. (a single period; seeSection 3.1.5.1), or
omit all IDs from the command line.

QMTest can run tests in multiple concurrent threads of execution or on multiple remote hosts. See the documentation
for therun commandfor details.

3.2.1. Ordering and Dependencies
Given one or more input test names and test suite names, QMTest employs the following procedure to determine
which tests and resources to run and the order in which they are run.

1. QMTest resolves test names and test suite names. Test suites are expanded into the tests they contain. Since test
suites may contain other test suites, this process is repeated until all test suites have been expanded. The result is
a set of tests that are to be run.

2. QMTest computes a schedule for running the tests to be run such that a test’s prerequisites are run before the test
itself is run. Prerequisites not included in the test run are ignored. Outside of this condition, the order in which
tests are run is undefined.

If QMTest is invoked to run tests in parallel or distributed across severaltargets, the tests are distributed among
them as well. QMTest does not guarantee that a test’s prerequisites are run on the same target, though. On each
target, tests are assigned to the next available concurrent process or thread.

3. QMTest determines the required resources for the tests to be run. If several tests require the same resource,
QMTest attempts to run all of the tests on the same target. In this case, the resource is set up and cleaned up only

14

Chapter 3. Using QMTest

once. In some cases, QMTest may schedule the tests on multiple targets; in that case, the resource is set up and
cleaned up once on each target.

In some cases, a test, resource setup function, or resource cleanup function is not executed:

• A test specifies for each of its prerequisite tests an expected outcome. If the prerequisite is included in the test run
and the actual outcome of the prerequisite test is different from the expected outcome, the test is not run. Instead, it
is given an UNTESTED outcome.

If a test’s prerequisite is not included in the test run, that prerequisite is ignored.

• If a setup function for one of the resources required by a test fails, the test is given an UNTESTED outcome.

• The cleanup function of a resource is run after the last test that requires that resource, whether or not that test was
run. The cleanup function is run even if the setup function failed.

3.2.2. The Context
QMTest passes a context object to theRun method of a test that is run and to theSetUp method of a resource.

Most of the properties of the context are the same for all tests and resource functions run during a single test run.
These properties are configured as part of the test run. For example, when you run tests using theqmtest run
command, you may specify individual context properties with the--context (-c) or --load-context (-C)
options.

In addition, a resource setup function may add additional properties to a context. These added properties do not
become part of the common context; they are hidden from other tests and resources except that the properties added
by a resource are visible to tests that require that resource.

For instance, a resourceSetUp function might allocate the resource and place a handle to it (for instance, a
temporary directory name or a database session key) in the context as a context property. Tests that require that
resource have access to the temporary resource via the handle stored in the context. The resource’s cleanup function
also uses the handle to deallocate the resource. That information should be stored in the resource object itself since
no context is made available to theCleanUp .

3.3. Test Database Contents
The default QMTest test database implementation stores the database as a directory hierarchy containing XML files.
Each QMTest subdirectory is represented by a subdirectory in the filesystem. A test, suite, or resource is represented
by an XML file. These files have file extensions.qmt , .qms , and.qma , respectively.

Expert QMTest users may modify the contents of the test database directly by editing these files. However, it is the
user’s responsibility to ensure the integrity and validity of the XML contents of each file. For example, file and
directory names should contain only characters allowed in identifiers (lower-case letters, digits, hyphens, and
underscores); a period should only be used before a file extension, such as.qmt . Also, the files and directories in a
test database should not be modified directly while QMTest is running with that test database.

15

Chapter 3. Using QMTest

3.4. Invoking QMTest
All QMTest functionality is available using theqmtestcommand.

3.4.1. qmtest

3.4.1.1. Synopsis

qmtest [option ...] command [command-option ...] [argument ...]

3.4.1.2. Options

These options can be used with any QMTest command, and must precede the command name on the command line.

All options are available in a "long form" prefixed with "--" (two hyphens). Some options also may be specified in a
"short form" consisting of a single hyphen and a one-letter abbreviation. Short-form options may be combined; for
example,-abc is equivalent to-a -b -c.

-D path
--tdb path

Use the test database located in the directory given bypath . This flag overrides the value of the environment
variable QMTEST_DB_PATH. If neither this flag nor the environment variable is specified, QMTest assumes
that the current directory should be used as the database. SeeSection 3.1.6.

-h

--help

Display help information, listing commands and general options for theqmtestcommand.

--version

Describe the version of QMTest in use.

Additional options are available for specific commands; these are presented with each command. Options specific to
a command must follow the command on the command line. Specify the--help (-h) option after the command for
a description of the command and a list of of available options for that command.

3.4.2. qmtest create

3.4.2.1. Summary

Create a new extension instance.

16

Chapter 3. Using QMTest

3.4.2.2. Synopsis

qmtest create [option ...] kind descriptor

3.4.2.3. Description

Theqmtest createcreates a new extension instance. For example, this command can be used to create a new test or
resource. For a list of the kinds of extensions supported by QMTest, runqmtest extensions. Thekind must be one
of these extension kinds.

The descriptor specifies an extension class and (optionally) attributes for that extension class. The form of the
descriptor isclass (attributes), where the attributes are of the formattr = " val " . If there are no attributes,
the parentheses may be omitted.

Theclass may be either the path to an extension file or a QMTest class name in the formmodule.class . If the
class is the path to an extension file (such as an existing test or resource file), the class name used is the one
provided in the file; otherwise the class named used is the name provided on the command line.

The attributes used to construct the extension instance come from three sources: the attributes in the extension file (if
theclass is the path to an extension file), the--attribute options provided on the command line, and the
explicit attributes provided in the descriptor. If multiple values for the the same attribute name are provided, the value
used is taken from the first source in the following list for which there is a value: the rightmost attribute provided in
the descriptor, the extension file, or the rightmost--attribute present on the command line.

The new extension file is written to the file specified with the--output option, or to the standard output if no
--output is specified.

Thecreatecommand accepts these options:

-a name=value
--attribute name=value

Set the target class argumentname to value . The set of valid argument names and valid values is dependent
on the extension class in use.

-o file
--output file

Write a description of the extension instance tofile .

3.4.2.4. Example

This command:

qmtest create -a format=stats -o rs
result_stream text_result_stream.TextResultStream(filename="rs")

creates a file calledrs containing an instance ofTextResultStream .

17

Chapter 3. Using QMTest

3.4.3. qmtest create-target

3.4.3.1. Summary

Create a new target.

3.4.3.2. Synopsis

qmtest create-target [option ...] name class [group]

3.4.3.3. Description

Theqmtest create-targetcommand creates a new target. A target is an entity that runs tests; normally, a target
corresponds to a particular machine.

The target’s name and class must be specified. An optional group may also be specified. When QMTest decides
which target to use to run a particular tests, it will select a target that matches the test’s requested target group.

Thecreate-targetcommand accepts these options:

-a name=value
--attribute name=value

Set the target class argumentname to value . The set of valid argument names and valid values is dependent
on the target class in use.

-T file
--targets file

Write the target description to the indicatedfile . If there are already targets listed infile , they will be
preserved, except that any target with the same name as the new target will be removed. If this option is not
present, the file used will be theQMTest/targets file in the test database directory.

3.4.4. qmtest create-tdb

3.4.4.1. Summary

Create a new test database.

3.4.4.2. Synopsis

qmtest create-tdb [option ...]

18

Chapter 3. Using QMTest

3.4.4.3. Description

Theqmtest create-tdbcommand creates a new, empty test database. A test database is a directory in which QMTest
stores configuration files, tests, and other data. Certain test database classes may also store data elsewhere, such as in
an external relational database.

The test database is created in the directory specified by--tdb (-D) option or by setting the QMTEST_DB_PATH
environment variable. If no database path is specified, QMTest assumes that the current directory is the test database.

By default, QMTest creates a new test database that uses the standard XML-based implementation. (SeeSection 4.5
for information about writing a test database class.)

Thecreate-tdbcommand accepts these options:

-a name=value
--attribute name=value

Set the database attributename to value . The set of attribute names and valid values is dependent on the
database class in use. The default database class accepts no attributes.

-c class
--class class

Use the test database class given byclass . Theclass may have the general form described inSection 3.4.2.
Once you create a test database, you cannot change the test database implementation it uses. If you do not use
this option, QMTest will use the default test database implementation, which uses an XML file format to store
tests.

3.4.5. qmtest gui

3.4.5.1. Summary

Start the graphical user interface.

3.4.5.2. Synopsis

qmtest gui [option ...]

3.4.5.3. Description

Theqmtest guistarts the graphical user interface. The graphical user interface is accessed through a web browser.
You must have a web browser that supports JavaScript to use the graphical interface. QMTest has been tested with
recent versions of Internet Explorer and Netscape Navigator. Other web browsers may or may nor work with
QMTest.

Thegui command accepts these options:

19

Chapter 3. Using QMTest

-A address
--address address

Bind the server to the indicated internetaddress , which should be a dotted quad. By default, the server binds
itself to the address127.0.0.1 , which is the address of the local machine. If you specify another address, the
server will be accessible to users on other machines. QMTest does not perform any authentication of remote
users, so you should not use this option unless you have a firewall in place that blocks all untrusted users.

-c name=value
--context name=value

For details about this option, see the description of theqmtest run command.

-C file
--load-context file

For details about this option, see the description of theqmtest run command.

--daemon

Run the QMTest GUI as a daemon. In this mode, QMTest will detach from the controlling terminal and run in
the background until explicitly shutdown.

-j count
--concurrency count

For details about this option, see the description of theqmtest run command.

--no-browser

Do not attempt to start a web browser when starting the GUI. QMTest will still print out the URL at which the
server can be accessed. You can then connect to this URL manually using the browser of your choice.

-O file
--outcomes file

For details about this option, see the description of theqmtest run command.

--pid-file path

Specify thepath to which the QMTest GUI will write its process ID. This option is useful if you want to run
QMTest as a daemon. If this option is not provided, no PID file is written. If you specify this option, butpath
is the empty string, QMTest will check the.qmrc configuration file for apid-file entry. If there is no such
entry, QMTest will use an appropriate platform-specific default value.

--port port

Specify theport on which the QMTest GUI will listen for connections. If this option is not provided, QMTest
will select an available port automatically.

-T file
--targets file

For details about this option, see the description of theqmtest run command.

20

Chapter 3. Using QMTest

3.4.6. qmtest extensions

3.4.6.1. Summary

List available extension classes.

3.4.6.2. Synopsis

qmtest extensions[option ...]

3.4.6.3. Description

Theqmtest extensionslists available extension classes and provides a brief description of each class. You can use
this command to list all of the available extension classes, or to list all of the available extension classes of a
particular type. For example, you can use this command to list all of the available test classes.

Theextensionscommand accepts these options:

-k kind
--kind kind

List the available extension classes of the indicatedkind . Thekind must be one oftest , resource ,
target , or database .

3.4.7. qmtest register

3.4.7.1. Summary

Register an extension class.

3.4.7.2. Synopsis

qmtest register kind class-name

3.4.7.3. Description

Theqmtest registerregisters an extension class with QMTest. As part of this process, QMTest will load your
extension class. If the extension class cannot be loaded, QMTest will tell you what went wrong.

QMTest will search for your extension class in the directories it would search when running tests, including those
given by the environment variable QMTEST_CLASS_PATH.

21

Chapter 3. Using QMTest

Thekind argument tells QMTest what kind of extension class you are registering. If you invokeqmtest register
with no arguments it will provide you with a list of the available extension kinds.

Theclass-name argument gives the name of the class in the formmodule.Class . QMTest will look for a file
whose basename is the module name and whose extension is eitherpy , pyc , or pyo .

3.4.8. qmtest run

3.4.8.1. Summary

Run tests or test suites.

3.4.8.2. Synopsis

qmtest run [option ...] [test-name | suite-name]...

3.4.8.3. Description

Theqmtest run command runs tests and displays the results. If no test or suite names are specified, QMTest runs all
of the tests in the test database. If test or suite names are specified, only those tests or suites are run. Tests listed more
than once (directly or by inclusion in a test suite) are run only once.

Therun command accepts these options:

-c name=value
--context name=value

Add a property to thetest execution context. The name of the property isname, and its value is set to the string
value .

This option may be specified multiple times.

-C file
--load-context file

Read properties for thetest execution contextfrom the filefile .

The file should be a text file with one context property on each line, in the formatname=value . Leading and
trailing whitespace on each line are ignored. Also, blank lines and lines that begin with "#" (a hash mark) are
ignored as comments.

This option may be specified more than once, and used in conjunction with the--context option. All of the
context properties specified are added to the eventual context. If a property is set more than once, the last value
provided is the one used.

22

Chapter 3. Using QMTest

If this option is not specified, but a file namedcontext exists in the current directory, that file is read. The
properties specified in this file are processed first; the values in this file can be overridden by subsequent uses of
the--context option on the command line.

-f format
--format format

Control the format used when displaying results. The format specified must be one offull , brief , stats ,
batch , or none . Thebrief format is the default if QMTest was invoked interactively; thebatch format is the
default otherwise. In thefull format, QMTest displays any annotations provided in test results. In thebrief

mode only the causes of failures are shown; detailed annotations are not shown. In thestats format, no details
about failing tests are displayed; only statistics showing the number of passing and failing tests are displayed. In
thebatch mode, the summary is displayed first, followed by detailed results for tests with unexpected
outcomes. In thenone mode, no results are displayed, but a results file is still created, unless the--no-output

option is also provided.

-j count
--concurrency count

Run tests in multiplecount concurrent processes on the local computer. On multiprocessor machines, the
processes may be scheduled to run in parallel on different processors. QMTest automatically collects results
from the processes and presents combines test results and summary. By default, one process is used.

This option may not be combined with the--targets (-T) option.

--no-output

Do not produce a test results file.

-o file
--output file

Write full test results tofile . Specify "- " (a hyphen) to write results to standard output. If neither this option
nor --no-output is specified, the results are written to the file namedresults.qmr in the current directory.

-O file
--outcomes file

Treatfile as a set of expected outcomes. Thefile must have be a results file created either byqmtest run,
or by saving results in the graphical user interface. QMTest will expect the results of the current test run to
match those specified in thefile and will highlight differences from those results.

--random

Run the tests in a random order.

This option can be used to find hidden dependencies between tests in the testsuite. (You may not notice the
dependencies if you always run the tests in the same order.)

23

Chapter 3. Using QMTest

--rerun file

Rerun only those tests that had unexpected outcomes.

The tests run are determined as follows. QMTest starts with all of the tests specified on the command line, or, if
no tests are explicitly specified, all of the tests in the database. If no expectations file is specified (see the
description of the--outcomes option), then all tests that passed in the results file indicated by the--rerun

option are removed form the set of eligible tests. If an expectations file is specified, then the tests removed are
tests whose outcome in the results file indicated by the--rerun option is the same as in the expectations file.

The--rerun provides a simple way of rerunning failing tests. If you run your tests and notice failures, you
might try to fix those failing tests. Then, you can rerun the failing tests to see if you succeeded by using the
--rerun option.

--result-stream descriptor

Specify an additional output result stream. The descriptor is in the format described inSection 3.4.2.

--seed integer

If the --random is used, QMTest randomizes the order in which tests are run, subject to the constraints
described inSection 3.2.1. By default, the random number generator is seeded using the system time.

For debugging purposes, it is sometimes necessary to obtain a reproducible sequence of tests. Use the--seed

option to specify the seed for the random number generator.

Note that even with the same random number seed, if tests are run in parallel, scheduling uncertainty may still
produce variation in the order in which tests are run.

-T file
--targets file

Use targets specified in target specification filefile . If this option is not present, theQMTest/targets in the
test database directory will be used. If that file is not present, the tests will be run in serial on the local machine.

3.4.9. qmtest summarize

3.4.9.1. Summary

Theqmtest summarizedisplays information stored in a results file.

3.4.9.2. Synopsis

qmtest summarize [option ...] [test-name | suite-name]...

24

Chapter 3. Using QMTest

3.4.9.3. Description

Theqmtest summarizeextracts information stored in a results file and displays this information on the console. The
information is formatted just as if the tests had just been run, but QMTest does not actually run the tests.

Thesummarizecommand accepts the following options:

-f format
--format format

For details about this option, see the description of theqmtest run command.

-O file
--outcomes file

For details about this option, see the description of theqmtest run command.

--result-stream descriptor

Specify an additional output result stream. The descriptor is in the format described inSection 3.4.2.

3.4.10. Environment Variables
QMTest recognizes the following environment variables:

QMTEST_CLASS_PATH

If this environment variable is set, it should contain a list of directories in the same format as used for the
system’s PATH environment variable. These directories are searched (before the directories that QMTest
searches by default) when looking for extension classes such as test classes and database classes.

QMTEST_DB_PATH

If this environment variable is set, its value is used as the location of the test database, unless the--tdb (-D)
option is used. If this environment variable is not set and the--tdb option is not used, the current directory is
used as the test database.

3.4.11. Configuration Variables
These configuration variables are used by QMTest. You should define them in the[qmtest] section of your QM
configuration file.

pid-file

The default path to use when creating a PID file with the--pid-file option. (SeeSection 3.4.5for more
information about this option.) If this entry is not present, an appropriate platform-specific default value is used.

25

Chapter 3. Using QMTest

3.4.12. Return Value
If QMTest successfully performed the action requested, QMTest returns 0. For theqmtest run or qmtest
summarizecommands, success implies not only that the tests ran, but also that all of the tests passed (if the
--outcomes option was not used) or had their expected outcomes (if the--outcomes option was used).

If either therun command or thesummarizecommand was used, and at least one test failed (if the--outcomes

option was not used) or had an unexpected outcome (if the--outcomes option was used),qmtest returns 1.

If QMTest could not perform the action requested,qmtest returns 2.

3.5. Test and Resource Classes
This section describes test classes and resource classes included with QMTest.Section 4.3provides instructions for
writing your own test classes,Section 4.4for resource classes.

3.5.1. Test Classes

3.5.1.1.command.ExecTest

Thecommand.ExecTest test class runs a program from an ordinary executable file. Each test specifies the program
executable to run, its full command line, and the data to feed to its standard input stream.ExecTest collects the
complete text of the program’s standard output and standard error streams and the program’s exit code, and compares
these to expected values specified in the test. If the standard output and error text and the exit code match the
expected values, the test passes.

A command.ExecTest test supplies the following arguments:

Program (text field)

The name of the executable file to run.command.ExecTest attempts to locate the program executable in the
path specified by the path property of the test context.

Argument List (set of strings)

The argument list for the program. The elements of this set are sequential items from which the program’s
argument list is constructed.command.ExecTest automatically prepends an implicit zeroth element, the full
path of the program.

Standard Input (text field)

Text or data to pass to the program’s standard input stream. This data is written to a temporary file, and the
contents of the file are directed to the program’s standard input stream.

26

Chapter 3. Using QMTest

Environment (set of strings)

The environment (i.e. the set of environment variables) available to the executing program. Each element of this
argument is a string of the form "VARIABLE=VALUE".

command.ExecTest adds additional environment variables automatically.

In addition, every context property whose value is a string is accessible as an environment variable; the name of
the environment variable is the name of the context property, prefixed with "QMV_" and with any dots (".")
replaced by a double underscore ("__"). For example, the value of the context property "CompilerTable.c_path"
is available as the value of the environment variable "QMV_CompilerTable__c_path".

Expected Exit Code (integer field)

The exit code value expected from the program. If the program produces an exit code value different from this
one, the test fails.

Expected Standard Output (text field)

The text or data which the program is expected to produce on its standard output stream. The actual text or data
written to standard output is captured, andcommand.ExecTest performs a bytewise comparison to the
expected text or data. If they do not match, the test fails.

Expected Standard Error (text field)

The text or data which the program is expected to produce on its standard error stream. The actual text or data
written to standard error is captured, andcommand.ExecTest performs a bytewise comparison to the expected
text or data. If they do not match, the test fails.

3.5.1.2.command.ShellCommandTest

command.ShellCommandTest is very similar tocommand.ExecTest , except that it runs a program via the shell
rather than directly. Instead of specifying an executable to run and the elements of its argument list, a test provides a
single command line. The shell is responsible for finding the executable and constructing its argument list.

Standard input and the environment are specified in the test. The test passes if the command produces the expected
standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell starts up.
Therefore, the environment set up by acommand.ShellCommandTest , including the contents of the test context,
are directly accessible via shell variables. The syntax to use depends on the particular shell.

command.ShellCommandTest has the same fields ascommand.ExecTest , except that the Program and Argument
List properties are replaced with these:

27

Chapter 3. Using QMTest

Command (text field)

The command to run. The command is delivered verbatim to the shell. The shell interprets the command
according to its own quoting rules and syntax.

3.5.1.3.command.ShellScriptTest

command.ShellScriptTest is an extension ofcommand.CommandTest that lets a test specify an entire shell
script instead of a single command. The script specified in the test is written to a temporary file, and this file is
interpreted by the specified shell or command interpreter program.

Standard input, the environment, and the argument list to pass to the script are specified in the test. The test passes if
the script produces the expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell starts up.
Therefore, the environment set up by acommand.ShellScriptTest , including the contents of the test context, are
directly accessible via shell variables. The syntax to use depends on the particular shell.

command.ShellScriptTest has the same fields ascommand.ExecTest , except that the Program property is
replaced with:

Script (text field)

The text of the script to run.

3.6. Test Targets
Test targets represent entities that QMTest uses to run tests. SeeSection 3.1.7for an overview of how QMTest uses
targets.

3.6.1. Target Specification
Each target specification includes the following:

1. The name of the target. This is a name identifying the target, such as the host name of the computer which will
run the tests. Target names should be unique in a single target file.

2. Thetarget class. Similar to a test class, a target class is a Python class which implements a type of target. As
with test classes, a target class is identified by its name, which includes the module name and the class name.

28

Chapter 3. Using QMTest

For example,thread_target.ThreadTarget is the name of a target class, provided by QMTest, which runs
tests in multiple threads on the local computer.

QMTest includes several target class implementations. SeeSection 3.6.2for details.

3. A target groupname. The test implementor may choose the syntax of target group names in a test
implementation. Target groups may be used to encode information about target attributes, such as architecture
and operating system, and capabilities.

4. Optionally, a target specification may include additional properties. Properties are named and have string values.
Some target classes may use property information to control their configuration. For instance, a target class
which executes tests on a remote computer would extract the network address of the remote computer from a
target property.

3.6.2. Target Classes
QMTest includes these target class implementations.

3.6.2.1.SerialTarget

Theserial_target.SerialTarget target class runs tests one after the other on the machine running QMTest. If
you use aSerialTarget , you should not also use any other targets, including anotherSerialTarget at the same
time.

3.6.2.2.ThreadTarget

The thread_target.ThreadTarget target class runs tests in one or more threads on the machine running
QMTest. TheThreadTarget can be used to run multiple tests at once.

ThreadTarget uses the following properties:

• The concurrency specifies the number of threads to use. Larger numbers of threads will allow QMTest to run more
tests in parallel. You can experiment with this value to find the setting that allows QMTest to run tests most
quickly.

3.6.2.3.ProcessTarget

Theprocess_target.ProcessTarget target class run tests in one more processes on the machine running
QMTest. This target class is not available on Windows. LikeThreadTarget , ProcessTarget can be used to run
multiple tests simultaneously.

In general, you should useThreadTarget instead ofProcessTarget to maximize QMTest performance. However,
on machines that do not have threads,ProcessTarget provides an alternative way of running tests in parallel.

ProcessTarget uses the following properties:

29

Chapter 3. Using QMTest

• The concurrency specifies the number of processes to use. Larger numbers of processes will allow QMTest to run
more tests in parallel. You can experiment with this value to find the setting that allows QMTest to run tests most
quickly.

• QMTest uses the path given by theqmtestproperty to create additional QMTest instances. By default, the path
/usr/local/bin/qmtest is used.

3.6.2.4.RemoteShellTarget

Thersh_target.RSHTarget target class runs tests on a remote computer via a remote shell invocation (rsh, ssh,
or similar). This target uses a remote shell to invoke a program similar to theqmtestcommand on the remote
computer. This remote program accepts test commands and responds with results from running these tests.

To useRSHTarget , the remote computer must have QMTest installed and must contain an identical copy of the test
database. QMTest does not transfer entire tests over the remote shell connection; instead, it relies on the remote test
database for loading tests.

In addition, the remote shell program must be configured to allow a remote login without additional intervention
(such as typing a password). If you usersh, you can use an.rhosts file to set this up. If you usessh, you can use an
SSH public key and thessh-agentprogram for this. See the corresponding manual pages for details.

RSHTarget uses all of the properties given above forProcessTarget . In addition,RSHTarget uses the following
properties:

• The remote_shell property specifies the path to the remote shell program. The default value isssh. The remote
shell program must accept the same command-line syntax asrsh.

• The host property specifies the remote host name. If omitted, the target name is used.

• The database_path property specifies the path to the test database on the remote computer. The test database must
be identical to the local test database. If omitted, the local test database path is used.

• The arguments property specifies additional command-line arguments for the remote shell program. The value of
this property is split at space characters, and the arguments are added to the command line before the name of the
remote host.

For example, if you are using thesshremote shell program and wish to log in to the remote computer using a
different user account, specify the-l username option using the arguments property.

30

Chapter 4. Extending QMTest
If the built-in functionality provided with QMTest does not serve all of your needs, you can extend QMTest. All
extensions to QMTest take the form of Python classes. You can write new test classes, resource classes, or database
classes in this way.

The contents of the class differ depending on the kind of extension you are creating. For example, the methods that a
new test class must implement are different from those that must be provided by a new database class. In each case,
however, you must create the class and place it in a location where QMTest can find it. The following sections explain
how to create extension classes. The last section in this chapter explains how to register your new extension classes.

4.1. Extension Classes
All extensions to QMTest are implemented by writing a new Python class. This new Python class will be derived
from an appropriate existing QMTest Python class. For example, new test classes are derived fromTest while new
test database classes are derived fromDatabase .

The classes from which new extensions are derived (likeTest) are all themselves derived fromExtension

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/extension/Extension.html). TheExtension class
provides the basic framework used by all extension classes. In particular, every instance ofExtension can be
represented in XML format in persistent storage.

EveryExtension class has an associated list ofarguments. When anExtension instance is written out as XML,
the value of each argument which is encoded in the output. Similarly, when anExtension instance is read back in,
the arguments are decoded. Conceptually, twoExtension instances are the same if they are instances of the same
derived class and their arguments have the same values.

Each argument has both a name and a type. For example, everyTest has an argument calledtarget_group . The
target group is a string indicating on which targets a particular test should be run.

Each argument is represented by an instance ofField

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/Field.html). AField instance can read or write
values in XML format. AField can also produce an HTML representation of a value, or an HTML form that allows
a user to update the value of the field. It is the fact that allExtension arguments are instances ofField that makes
it possible to representExtension instances as XML. Smilarly, it is the the use of theField class that allows the
user to edit tests in the QMTest GUI.

Each class derived fromExtension may contain a variable calledarguments . The value ofarguments must be a
list of Field instances. The complete set of arguments for a derived class consists of the arguments specified in the
derived class together with all of those specified in base classes. In other words, a derived class should not explicitly
include arguments that have already been specified in a base class.

For example, after the following class definitions:

class A(Extension):
arguments = [TextField("x")]

class B(A):
arguments = [IntegerField("y"),

TextField("z")]

31

Chapter 4. Extending QMTest

A has one argument (x) andB has three arguments (x , y , andz).

None of the arguments may have the same name as a class variable in the extension class, including class variables in
base classes.

4.2. Field Classes
A Field (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/Field.html) is a named, typed
component of a data structure. AField can read and write XML representations of values, generate HTML
representations of values, or present HTML forms that permit the user to update the value of the field. There are
several classes derived fromField that you can use in extension classes. If none of those classes satisfy your needs,
you can create a new class derived fromField .

EveryField has a name. The name is a string, and must be a valid Python identifier. (The reason for this restriction
is that instances ofExtension have an instance variables corresponding to each field.) AField may also have a
title, which is used when presenting theField to the user. The title need not be a valid Python identifier. For
example, theRSHTarget class has an argument whose name ishost , but whose title isRemote Host Name . When
accessing an instance of this class, the programmer refers toself.host . In the GUI, however, the user will see the
value presented asRemote Host Name .

A Field may have an associated description, which is a longer explanation of theField and its purpose. This
information is presented to the user by the GUI.

A Field may have a default value. The default value is used if no explicit value is provided for the field.

This example code fromRSHTarget shows how aField is constructed:

qm.fields.TextField(
name="remote_shell",
title="Remote Shell Program",
description="""The path to the remote shell program.

The name of the program that can be used to create a
remote shell. This program must accept the same command
line arguments as the ’rsh’ program.""",
default_value="ssh")

See the internal documentation forField

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/Field.html) for complete interface
documentation.

32

Chapter 4. Extending QMTest

4.2.1. Built-In Field Classes
QMTest comes with several useful field classes:

• IntegerField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/IntegerField.html) stores
integers.

• TextField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/TextField.html) stores strings.

• EnumerationField

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/EnumerationField.html) stores one of a set of
(statically determined) possible values.

• ChoiceField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/ChoiceField.html) stores one
of a set of (dynamically determined) possible values.

• BooleanField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/BooleanField.html) stores a
boolean value.

• TimeField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/TimeField.html) stores a date
and time.

• AttachmentField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/AttachmentField.html)
stores arbitrary data.

• SetField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/SetField.html) stores multiple
values of the same type.

• TupleField (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/fields/TupleField.html) stores a fixed
number of other fields.

4.2.2. Writing Field Classes
Before writing any code, you should decide what kind of data your field class will store. For example, will your field
class store arbitrary strings? Or only strings that match a particular regular expression? Or will your field class store
images? Once you have decided this question, you can write theValidate function for your field class. This
function checks an input value (a Python object) for validity.Validate can return a modified version of the value.
For example, if the field stores strings, you could choose to accept an integer as an input toValidate and convert
the integer to a string before returning it.

TheFormatValueAsHtml function produces an HTML representation of the value. You must define this function
so that the GUI can display the value of the field. Thestyle parameter indicates how the value should be displayed.
If the style isnew or edit , the HTML representation returned should be a form that the user can use to set the value.
If the user does not modify the form,ParseFormValue should yield the value that was provided to
FormatValueAsHtml .

TheMakeDomNodeForValue andGetValueFromDomNode functions convert values to and from XML format. The
FormatValueAsText andParseTextValue functions convert to and from plain text. As with
FormatValueAsHtml andParseFormValue , these pairs of functions should be inverses of one another.

TheParseTextValue , ParseFormValue , andGetValueFromDomNode functions should useValidate to check
that the values produced are permitted by theField . In this way, derived classes that want to restrict the set of valid

33

Chapter 4. Extending QMTest

values, but are otherwise content to use the base class functionality, need only provide a new implementation of
Validate .

All of the functions which read and writeField values may raise exceptions if they cannot complete their tasks. The
caller of theField is responsible for handling the exception if it occurs.

4.3. Writing Test Classes
If the test classes that come with QMTest do not serve your needs, you can write a new test class. A test class is a
Python class derived fromTest (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/test/test/Test.html).
The test class must define anarguments variable, whose value is a sequence ofField s, and aRun function.

The arguments to the test are the inputs to the test. TheRun function explains how to perform the test and how to
determine whether or not it passed. For example, if you want to test that a compiler correctly compiled a particular
source file, the source file would be an argument to the test while theRun would be responsible for running the
compiler and the program generated by the compiler. The path to the compiler itself would be provided via the
context (Section 3.1.3); that is an input to the testing system that varies depending on the user’s environment.

TheRun function takes two arguments: the context and the result. The context object is an instance ofContext

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/test/context/Context.html). The result object is an
instance ofResult (http://www.codesourcery.com/qm/qmtest_internals_docs/qm/test/result/Result.html). The result
is initialized with the PASS outcome. Therefore, if theRun function does not modify the result, the test will pass. If
the test fails, theResult.Fail function should be called to indicate failure.

TheResult.Annotate function can be used to add information to theResult , whether or not the test passes. For
example, annotations can be used to record the time a test took to execute, or to log the output from a command run
as part of the test. Every annotation is a key/value pair. Both keys and values are strings. The key created by a test
classC should have the formC.key_name . The value must be valid HTML. When results are displayed in the GUI,
the HTML is presented directly to the user. When results are displayed as text, the HTML is converted to plain text.
That conversion uses textual devices (such as single quotes around verbatim text) to emulate the HTML markup
where possible.

As a convenience, you can use Python’s dictionary notation to access annotations. For example:

result["C.key1"] = "value"
result["C.key2"] = result["C.key1"].upper()

is equivalent to:

result.Annotate({ "C.key1" : "value"
"C.key2" : "VALUE" })

The context (like the result) is a set of key/value pairs. The keys used by a test classC should have the form
C.key_name . The values are generally strings, but if a test depends on a resource, the resource can provide context
values that are not strings.

34

Chapter 4. Extending QMTest

If the Run raises an unhandled exception, QMTest creates a result for the test with the outcome ERROR. Therefore,
test classes should be designed so that they do not raise unhandled exceptions when a test fails. However, QMTest
handles the exception generated by the use of non-existant context variables specially. Because this situation
generally indicates incorrect usage of the test suite, QMTest uses a special error message that instructs the user to
supply a value for the context variable.

4.4. Writing Resource Classes
Writing resource classes is similar to writing test classes. The requirements are the same except that, instead of aRun

function, you must provide two functions namedSetUp andCleanUp . TheSetUp function must have the same
signature as a test classsRun. TheCleanUp function is similar, but does not take acontext parameter.

The setup function may add additional properties to the context. These properties will be visible only to tests that
require this resource. To add a context property, use Python’s dictionary assignment syntax.

Below is an example of setup and cleanup functions for a resource which callscreate_my_resource and
destroy_my_resource to do the work of creating and destroying the resource. The resource is identified by a
string handle, which is inserted into the context under the nameResource.handle , where it may be accessed by
tests. Context property names should always have the formClass.name so that there is no risk of collision between
properties created by different resource classes.

4.5. Writing Database Classes
The test database class controls the format in which tests are stored. QMTest’s default database class stores each test
as an XML file, but you might want to use a format that is particularly well suited to your application domain or to
your organization’s arrangement of computing resources.

For example, if you were testing a compiler, you might want to represent tests as source files with special embedded
comments indicating what errors are expected when compiling the test. You could write a test database class that can
read and write tests in that format.

Or, if you wanted to share a single test database with many people in such a way that everyone automatically saw
updates to the database, you might want to put all of the tests on a central HTTP server. You could write a test
database class that retrieves tests from the server and creates new tests by uploading them to the server.

A test database class is a Python class that is derived fromDatabase

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/test/database/Database.html), which is itself derived
from Extension . To create a new database class, you must define methods that read and write tests, resources, and
suites.

The database is also responsible for determining how tests (and other entities stored in the database) are named. Each
item stored in the database must have a unique name. For a database that stores files in the filesystem, the name of
the file may be a good name. For a database of unit tests for Python module, the name of the module might be a good
name for the tests. Choosing the naming convention appropriate requires understanding both the application domain
and the way in which the tests will actually be stored.

The database class must have aGetTest function which retrieves a test from the database. Thetest_id parameter
provide the name of the test. TheGetTest function returns aTestDescriptor

(http://www.codesourcery.com/qm/qmtest_internals_docs/qm/test/database/TestDescriptor.html).1 A

35

Chapter 4. Extending QMTest

TestDescriptor indicates the test class, and the arguments to that test class. QMTest uses that information to
instantiate an instance of the test class itself as appropriate.

TheWrite function is the inverse ofGetTest . The test database is responsible for storing theTest provided. The
name of test can be obtained by callingGetId on theTest . When theRemove function is called the database is
responsible for removing the test named by theid parameter.

The functions that handle resources are analogous to those for tests. For exmaple,GetResource plays the same role
for resources asGetTest does for tests.

4.6. Registering an Extension Class
To use your test or resource class, you must place the Python module file containing it in a directory where QMTest
can find it. QMTest looks in three places when loading extension classes:

• If the environment variable QMTEST_CLASS_PATH is defined, QMTest first checks any directories listed in it.
This value of this environment variable should be a list of directories to check for the module file, in the same
format as the standard PATH environment variable.

• A test database may specify additional locations to check.

• QMTest checks the configuration directory (the subdirectory namedQMTest of a test database).

• Finally, QMTest checks a standard directory. This directory, installed with QMTest, contains modules with the
standard test classes described inSection 3.5.

You should generally place module files containing your test classes in the test database’sQMTest directory, unless
you plan to use the test classes in more than one test database.

You must use theqmtest registercommand to register your new extension class. You must perform this step no
matter where you place the module containing your extension class.

You can refer to the new extension class using the syntaxmodule.Class , wheremodule is the name of the module
andClass is the name of the class.

Notes
1. GetTest returns aTestDescriptor , rather than aTest , because that allows QMTest to avoid loading in the

test class. If you are running many tests in parallel, on many different machines, this indirection makes QMTest
more effficient; QMTest only needs to load a particular test class on a particular machine if an instance of that
class is being run on that machine.

36

Chapter 5. The QM Configuration File
QM allows you to set up a per-user configuration file that contains your personal preferences, defaults, and settings.

The configuration file is named$HOME/.qmrc . On Windows, you may have to set the HOME environment variable
manually.

The QM configuration file is a plain text file, with a format similar to that used in Microsoft Windows.INI files. It is
divided into sections by headings in square brackets. Three sections are supported:[common] contains configuration
variables common to all the QM tools, while[test] contains configuration variables specific to QMTest. Within
each section, configuration variables are set using the syntaxvariable =value .

Here is a sample QM configuration file:

> cat ~/.qmrc
[common]

browser=/usr/local/bin/mozilla

5.1. Configuration Variables
These configuration variables are used in all QM tools. You should define them in the[common] section of your QM
configuration file.

browser (UNIX-like platforms only)

The path to your preferred web browser. If omitted, QM attempts to runmozilla . The QM GUI does not
correctly with Netscape 4 due to limitations in the support for JavaScript and DOM in that browser.

command_shell

The shell program to run a single shell command. The value of this property is the path to the shell executable,
optionally followed by command-line options to pass to the shell, separated by spaces. The shell command to
run is appended to the command.

On GNU/Linux systems, the default is/bin/bash -norc -noprofile -c . On other UNIX-like systems,
the default is/bin/sh -c .

click_menus

If this option is not present, or has the value0, menus in the GUI are activated by moving the mouse over the
menu name.

If this option has the value1, the menus are activated by clicking on the menu name.

37

Chapter 5. The QM Configuration File

remote_shell (UNIX-like platforms only)

The program used for running commands on remote computers. The program must accept the same syntax as
the standardrsh command, and should be configured to run the command remotely without any additional
interaction (such as requesting a password from the TTY). The default value is/usr/bin/ssh .

script_shell

The shell program to run a shell script. The value of this property is the path to the shell executable, optionally
followed by command-line options to pass to the shell, separated by spaces. The filename of the shell command
is appended to the command.

On GNU/Linux systems, the default is/bin/bash -norc -noprofile . On other UNIX-like systems, the
default is/bin/sh .

38

